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STRUCTURAL IDENTIFICATION AND POTENTIAL SYSTEMS
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SUMMARY

Structures behaviour is estimated by means of mathematical models that may be calibrated by
dynamic identification procedures. The selection of right models is basic in the dynamic
identification in order to obtain the minimum distance between the structural system dynamics and
the mathematical model. At the same time the choice of right models is basic in order to obtain
simple solving equations that can give results with high degree of reliability. The reaching of the
minimum distance between the model and the real system by means of simple solving equations  is
a primary goal if one wants to obtain an effective identification procedure. Generally it is very
difficult to reach this goal since the using of complex models needs in order to reproduce the
complexity of structural systems and unfortunately, often, not reliable complex algorithms derive
from complex models. So a right medium must be searched. In this paper is analysed the using of
the so called potential models in structural identification. This models, by means a statistical
approach, allow to formulate an identification procedure for systems under stochastic loads. This
procedure allows one to obtain good results in terms of distance from the real system and consist
of solving some linear algebraic equations. The purpose of the paper is to show that the same
approach  is not effective when different models are used. Furthermore through the paper is shown
that, by means of potential models, the estimation of input probabilistic features can be performed
in addition to the estimation of structural mechanical features. Even in this case the using of
different models fails. Once more is underlined the effectiveness of potential models in
identification.

INTRODUCTION

The interest in the general topics of identification has increased greatly during the past three decades [Eykhoff,
1974;Kozin and Natke, 1986; Ghanem and Shinozuka, 1995]. It follows from this fact: it is possible to have
many kinds of mathematical models but it is very difficult to associate the right model to a structural system.
Identification is a tool to solve this problem.

Generally identification needs: a) to fix a class of parametric models, that is depending on a set of parameters; b)
to determine the model belonging to the fixed class which, better of each other, simulates the behaviour of the
structure. Every model belonging to the fixed class is obtained when a set of values for the parameters are
assigned. So determining the best model of the fixed class  means to estimate the best set of  parameters in such a
way the model reproduces the structural system dynamics. Generally the knowledge of the time output history
and the time input history needs for dynamic identification purpose. The choice of a right class of mathematical
models is basic in the identification in order to obtain the minimum distance between the structure dynamics and
the mathematical model. For example, supposing that the structure to be identified has a nonlinear behaviour and
supposing to choose a class of linear parametric models for its identification, the estimation of the best set of
parameters could converge to the best linear approximation of the real dynamic behaviour. No better result is
possible.
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Many techniques are effective for the identification of the stiffness features [Yun and Shinozuka, 1980; Hoshiya
and Saito, 1984; Koh and See, 1994; Ghanem and Shinozuka, 1995] but often these techniques fail for the
identification of the dissipation characteristics. It happens in special way when the system have a non linear
behaviour or is very complex in the sense that its modelling needs a multi degree of freedom approach. It can be
said that more complex is the system and the model used for reproducing its behaviour as more unreliable is to
identify the dissipation parameters. For this reason simple models are often preferred to complex models in spite
of their degree of approximation. It must be underlined that even the use of simple models fails when any data
are available about the input [Kozin and Natke, 1986].

System identification can be performed by means of  time domain approaches or frequency domain ones. In
[Cavaleri and Di Paola, 1999] it has been shown that good results can be obtained by using a time domain
approach even in the case of unknown input. It means that, referring to dissipation features, an important
improvement has been made in identification of systems. The results obtained in [Cavaleri and Di Paola, 1999]
derive from the use of a special class of models, that is the so called restricted potential models (RPM) whose
characteristics  can be found extensively in [Cavaleri and Di Paola, 1998a]. It means that the using of models
different from RPM does not guarantee the obtaining of algorithms with the same effectiveness as it will be
shown through the paper. It must be stated that in literature the words "potential systems" are more generally
used with the same meaning of "potential models".

RESTRICTED POTENTIAL MODELS

Let the equation of motion be
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where  X is a displacements n-vector, the dot upper X means derivative with respect of the time, r(X,b) is a
vector of non linear functions of X and b with the meaning of elastic restoring forces and b is a vector of the time
invariant stiffness parameters. W is a vector of gaussian white noises whose power spectral density matrix (PSD
matrix) is  K, that is
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[ ]⋅E  being the average operator and δ the unitary impulse (Dirac's δ). Furthermore in eq.(1) aj are the time

invariant dissipation parameters and ),(H XX !  is the total energy of the system, that is
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Eq. (1) belongs to the class of potential models  [Cai and Lin, 1996]. In the steady state the probability density

function associated to X X ! and   has the form
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where ),(h xx !  is the domain of the stochastic process ),(H XX ! , while xx ! and  are the domains of

X  X !and respectively. In eq.(4) c is a normalisation factor. Eq.(1) can be rewritten in the ôIt  form as follows
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where XZ
1

=  and XZ !=
2

 are the n-vectors of the state variables  and B is the n-vector of the Wiener

processes whose formal derivative is the n-vector of white noises W.

The model (1) has been much  investigated, as in [Cavaleri and Di Paola, 1998a; Cavaleri et al., 1999a], in order
to know its ability of approximating the behaviour of many kind of non linear systems.

SYSTEM IDENTIFICATION ALGORITHM

By means of RPM can be formulated an identification procedure that can be summarised as follows. First the
stiffness parameters bi (entries of the vector b) are estimated by means of the following equation
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where the vector ),( bXr must be better defined for its resolution with respect of b. Eq. (6) is obtained by

multiplying the first an the second member of eq.(5b) for 
1k2
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−
, dividing for dt, applying the average operator

and taking into account the non anticipating property of the process dB [Jazwinsky, 1970] with respect of each

function of X  X !and .

The dissipation parameters can be obtained by means of the equation
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Eq.(7) is obtained  by applying the ôIt  rule [Jazwinsky, 1970] to the powers of the system energy H, applying
the average operator and taking into account the non anticipating property of the process dB.

The stationary condition has been supposed in the obtaining eq.(6) and eq.(7).

In the practical applications, once a response measurement of the system to be identified is performed, the
averages contained in eq.(6) and eq.(7) can be evaluated and the parameters aj and bi can be estimated by solving
eq.(6) and eq.(7). Generally ),( bXr  is a linear function of the entries bi of b so eq.(6) is linear with respect of

the unknown bi . On the other hand eq.(7) is linear with respect of the unknown aj. The linearity of eq.(6) and
eq.(7) with respect of the unknowns makes simple their resolution.

An extended treatment of the steps followed in the obtaining eq.(6) and eq.(7) is given in [Cavaleri and Di Paola,
1999].

The technique used for obtaining eq.(6) and eq.(7) can be performed referring to models different from RPM  but
it leads to different equations that in many cases are not effectiveness to solve  a problem of structural
identification as it will be shown in the next section.

THE EFFECTIVENESS OF RPM IN SYSTEM IDENTIFICATION

Eq.(6) shows that the stiffness identification can be performed without taking into account the dissipation
parameters. As a matter of fact any information about the dissipation parameter appears into eq.(6). In this way
any estimation error of the dissipation parameters (that generally produce the largest errors) can influences the
estimation of the stiffness parameters. For this reason eq.(6) gives an estimation very reliable of the stiffness
parameters with errors less than 1% as it shown in [Cavaleri, 1998]. If one considers a model different from
RPM then, generally, a dependence between the stiffness parameters and the dissipation parameters is obtained
with a loss of reliability of the algorithm.
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For sake of clarity let the single degree of freedom  model be

(8)                                                                                                                   WXbXbXXaXaX
3

2121 =++++ !!!!!

where a1 and a2 are the dissipation parameters while b1 and b2 are the stiffness parameters. The using of the same
technique performed for obtaining eq.(6) leads to
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where now the estimation of the stiffness parameters b1 and b2 depends on the estimation of the dissipation
parameter a2. It means that every error in the evaluation of a2 produces an error in the evaluation of the stiffness
parameters.

As a consequence of the independence of the stiffness parameters estimation from the dissipation parameters
estimation, another fundamental remark can be derived. If one observes eq. (6) it is easy to recognise that it can
be written, without modifying its contents, as
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X2k-1 being the n-vector whose entries are Xi
2k-1. Eq.(10) shows that an estimation can be made of stiffness

parameters that appare in the i-th scalar equation of motion without involving any other parameter. As a matter
of fact eq. (10), once i is fixed, contains only informations on the stiffness parameters of the i-th motion
equation. It means that an error in the estimation of the stiffness parameters contained in the i-th of eq. (6) does
not influences the estimation of any other stiffness parameter. This property derives from the analytical form of
the potential models.

Once the stiffness parameters are estimated, the energy H can be evaluated and eq. (7) can be used to estimate
the dissipation parameters. As it is possible to recognise, the evaluation of the dissipation parameters can be
obtained without any information about the input intensity differently from the using of models which do not
belongs to the class of RPM. That is to say, if one applies the technique used in deriving eq.(7) with a model
different from RPM, it is not generally possible to obtain a set of algebraic equations effective for the evaluation
of the dissipation parameters. For example, if one refers to the model (8) then the following equation can be
obtained
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where s is the intensity of the white noise W (E[dB2]=sdt). Once the index i has been fixed eq. (11) constitutes an
homogeneous equation with respect to the unknowns a1, a2 and s. So it cannot be solved before the knowledge of
s.

In many usual cases eq. (7) can be transformed in
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α being a constant having the form [Cavaleri et al., 1999b]
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By using eq.(12) α and aj (j =1,…, s) can be estimated after the evaluation of the statistic moments of the H
powers. Eq.(12) is more effective than eq.(11) (supposing that it can be used for system identification) because

the statistic moments of the kind ][ n
HE  can be evaluated more exactly than the statistic moments of
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][ 21n XHE !− and ][ XXHE
21n !!− . As a matter of fact H is a slowly varying process while X and X!  are rapidly

varying processes.

In conclusion it must be underlined that eq.(6) and eq.(7) allows one to define completely the features of the
system without any dependence from the input intensity. Furthermore if one wants to know the probability
distribution of the state variables no more calculation must be performed because the probability function is
already known exactly (see eq.(4)) if the stiffness parameters bj and dissipation parameters aj are known. On the
other hand if eq.(8) is used as model, a Monte Carlo simulation have to be performed in order to know the
statistics of the response, once the stiffness and dissipation parameters are estimated.

INPUT IDENTIFICATION ALGORITHM

In many practical cases can be useful to identify the input probability features, that is to estimate the entries of
the PSD matrix K. At this point no complete treatment has been performed in literature about the input
identification by using RPM. In [Cavaleri, 1998] a first method has been proposed to estimate the input intensity
of single degree of freedom system by means of RPM while in [Cavaleri and Di Paola, 1999] the trace of the
PSD matrix K is evaluated. In this section will be shown as it is possible to evaluate the various entries of the
matrix K as a development of the methods presented in  [Cavaleri, 1998; Cavaleri and Di Paola,1999]. Even in
this case the effectiveness of the algorithm is connected to the special form of the model used as it will be shown
in the forward.

Theoretical formulation

Referring to the eq.(5b), the i-th  entries can be written as
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By multiplying the first and the second member of eq.(14) for Z2k(t2), with 12 tt ≤ , dividing for dt1 , averaging

and taking into account the non anticipating property of dB, one obtains
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obtained by using  a fundamental property of potential models [Cavaleri, 1998], that is
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being Ri the vector containing the terms 
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λ having the following expression
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where the signum (+) means that the values +
k2

Z!  is shifted of  dt with respect of  
i2

Z! .

The property expressed by eq. (17) is fundamental in the proposed algorithm. That property can be simply
obtained [Cavaleri, 1998] because of the knowledge of the state variables probability density function and cannot
be derived directly from other kind of models.

In the following section the presented input identification algorithm will be applied to verify its effectiveness.

Numerical application

Let us suppose a system of two degree of freedom  has the  following  govern equation
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where  the dissipation parameter have the value 2
1 10a
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Let us suppose that  the Power Spectral Density matrix K has been fixed as
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For the input identification purpose the following class of models has been chosen

(25)                                                                                                                                        WQXXKX =++ !!!
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where K  have to be estimated. So in this case the physic system is governed by an RPM and the model used for
identification purpose is an RPM. This choice is necessary to verify the effectiveness of the algorithm. As a
matter of fact the algorithm will be effective if the identification procedure will give

(26)                                                                                                                                                                   KK =

Once a response stationary time history has been generated its statistics can be calculated and the input
identification algorithm can be applied to test its degree of convergence. In the examined case  eq.(21) can be
applied for the evaluation of the entries of the Ri vector. So from eq.(18) two blocks  of independent  equations
can be obtained
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In the figs. [1-4] the values obtained for the input  parameters and the comparison  with the expected  values
derived by equation (24) are showed. The comparison are made for different time length  of the observed system
response. Obviously an increasing of the response observation produces an increasing of the effectiveness of the
algorithm because of the possibility to evaluate the entries of eq.(27) and eq.(28) with more precision. As it can
be seen an observation time greater than 500 sec needs for the algorithm convergence.

The possibility to estimate the parameters that define the input by means of limited observation time of the
response is fundamental for an identification procedure since the input intensity varies much rapidly during a day
producing a non stationary behaviour while for a correct application of the procedure the stationary conditions

Figure 1: Estimation of the PSD matrix entries for different response measurement times
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need.  The same results can be obtained for different mechanical features of the system and different
probabilistic features of the input.

CONCLUSIONS

The effectiveness of restricted potential models in identification of systems under stochastic loads has been
discussed. For this purpose the moment statstic approch followed with potential models has been compared with
the same approch with  different kind of models. The comparison has evidenced that the algorithm obtained by
using RPM is constituted by linear algebraic equations that can give results with high degree of reliability while
by using different models in some cases, as the analysed one, cannot be obtained solving equation of the
problem. The effectiveness of RPM has been even shown in the identification of the input probabilistic features.
As a matter of fact it has been shown that the entries of Power Spectral Density matrix, that defines the features
of the input, can be estimated following the same approach used in system identification parameters.  Even in
this case the results in input identification by RPM are obtained because of  their special analitycal form: once
more the effectiveness of RPM in identification is underlined.
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