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SUMMARY

Recent studies provided an opportunity to review some of the principles, which have been used in
the formulation of internationally accepted code recommendations relevant to the seismic design
of buildings also subjected to torsional phenomena.  In the context of specific design criteria this
review led to definitions of strength, element and system yield displacements and hence relevant
stiffness.  A liberal strategy in the assignment to lateral force resisting elements of strength, very
different from that based on traditionally defined stiffness, is postulated.  This  necessitates an
examination of displacement compatibility criteria applicable to ductile mixed structures subjected
to uniform translations.  Applications of the findings are illustrated.  The relevance of
displacement compatibility for the ultimate limit state is extended to address also systems in
which, due to static and dynamic torsional phenomena, element displacements, and hence
displacement ductility demands, may be different.  Only design and behaviour oriented simple
concepts, combined with static and dynamic equilibrium criteria, are used to encourage designers
to impart desirable properties to structures, which may be subjected to significant earthquake -
induced displacements.

INTRODUCTION

In countries where severe earthquakes are expected, with few exceptions, intentional ductile structural response
is the basis of the adopted design strategy.  Hence, the main features, which are to be addressed here, are those
relevant to displacements at the perceived ultimate limit state.  Most current code provisions are based on linear
elastic structural response and embody rules by which element strengths should be increased to compensate for
adverse effects of torsional phenomena.  In contrast, this brief study reviews some features considered to be
important when attempting to quantify critical element displacements at the ultimate limit state of an inelastic
system.

Existing design procedures are based on the magnitude of the stiffness eccentricity, adjusted to provide increased
strength to elements, which are subsequently expected to respond in the inelastic domain.  Codes do not address
explicitly issues affecting ductile torsional response.  Strength allocation to elements is generally based on the
stiffness of elastically responding elements.  Therefore, existing codified techniques manifest contradictions in
the prediction of elastic and ductile structural behaviour of building systems subjected to translational and
torsional motions.  Although, code recommended eccentricity amplifications were found in numerous analyses to
lead to satisfactory inelastic behaviour, the nature and understanding of the structure’s behaviour remains
shrouded.

DESIGN CRITERIA

The primary purpose of this study is to address means by which performance criteria of systems, conforming to the
ultimate limit state, may be more rationally executed.  These criteria are:



00622

· Earthquake-induced deformations, including system twist, should limit the expected displacement ductility
demand on any element to its stipulated ductility capacity, μΔimax.

· Magnitudes of ultimate interstorey displacements, to be expected at locations remote from the centre of
twist, should not exceed those considered acceptable for the building, typically 2-2.5% of the storey
height.

The purpose of considering torsion in ductile systems should be, therefore, to account for twist-induced
displacements on certain elements, additional to those associated with uniform translations of the system,
rather than to provide specific torsional resistance.

DEFINITIONS OF YIELD DISPLACEMENT, STRENGTH, STIFFNESS AND DUCTILITY

Traditional Definitions

In terms of the theory of elasticity, the flexural stiffness of, for example, prismatic elements, such as shown in
Fig. 1(a), is readily expressed in terms of the flexural rigidity of the cross section, EI, where E is the modules of
elasticity of the material used and I is the second moment of the cross sectional area.  For the evaluation of
elastic response, the translational and torsional stiffness of the system are then used.  The procedure is embodied
in relevant seismic codes[1].  Accordingly lateral design forces are assigned to elements in proportion of element
stiffness and displacements.  This procedure is traditionally used[2] to determine the required nominal strength
of elements, even though element response is no longer expected to be elastic.  The advantage in this design
procedure is simplicity and the fact that equilibrium criteria are satisfied. The procedure assumes that the
intended strength of each element in Fig. 1(a) is associated with the same displacement, Δ, shown in Fig. 1(b).
Traditional usage then mistakenly defines this as the element as well as the system yield displacement.

These familiar relationships are illustrated with the use of the example structure shown in Fig. 1(a).  Four
rectangular cantilever walls with identical widths and heights are assumed to be interconnected at each floor
level, while resisting a distributed lateral force, VE.  The same principles also apply when ductile frames provide
the necessary lateral strength.  The lengths of the walls, lwi, (1) to (4) are such that the flexural rigidities of the
sections have relative values of 1, 2, 4 and 8.  The corresponding linear response of the elements and the system,
associated with identical displacements of Δ, are shown in Fig. 1(b).

Figure 1:   Simulation of Wall Element Force-Displacement Responses

Element Yield Displacement

The estimation of the yield displacement of elements, Δyi, for example those of reinforced concrete cantilever
walls shown in Fig. 1(a), is best based on the yield curvature at the critical base section.  The curvature at first
yield, φy_, is defined by the yield strain of the steel, εy, at the extreme fibre and the relevant neutral axis depth,
klw.  After some repeated loading, not exceeding this elastic limit, the moment-curvature response is very close
to linear.  With additional imposed curvature, nonlinearity becomes evident.  Eventually the nominal flexural
strength of the section is attained.  The reference yield curvature, φy, at this level of resistance, subsequently
simply referred to as yield curvature, may then be obtained by linear extrapolation[3].  Extensive analyses[4]
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have shown that the yield curvature is relatively insensitive to the quantity of reinforcement used and the
intensity of the axial compression load, as long as this does not exceed 0.1fc_Ag, where Ag is the gross concrete
area of the section and fc_ is the compression strength of the concrete.  Therefore, for design purposes very
satisfactory approximations may be made[4] for rectangular wall sections when their yield curvature is estimated
by

φyi = 2εy/lwi (1)

Consequently the yield displacement of an element i, such as a cantilever wall, subjected to lateral forces with a
given pattern, may be satisfactorily estimated as:

l/h  _C2 = hC = wi
2
wiy

2
wiyiyi φ∆ (2)

where hwi is the height of the element and C is a constant corresponding with the vertical distribution of the
magnitudes of lateral forces.  In a structural system values of the yield strain of the steel and wall heights are
generally constant.  It is thus seen that in such common cases the yield displacement of a prismatic element is
inversely proportional to its length, ie,

Δyi µ 1/lwi (3)

The flexural rigidity of the section, EI, widely used in analytical studies of ductile seismic response, is not
involved in the definition of yield displacement.   It should be noted that, contrary to traditional usage, the yield
displacement of an element is independent of its strength.  The relative yield displacements, based on eq. (3), of
the four elements of the example structure with values 0.5 £ Δyi £ 1.0, are shown along the horizontal axis of Fig.
1(c).  For more refined estimates of Δyi, the extent of cracking, shear and anchorage deformations may be
included.

Element and System Strength

The strength of elements used here is that corresponding with ultimate limit state criteria for material strengths
and strains.  This may be the nominal strength, Vni, or the probable strength of the element.  Hence the
translatory strength of a system, such as shown in Fig. 1(a), is VE = ΣVni.

Element and System Stiffness

The application of bilinear modelling of ductile behaviour, eminently suited for the assessment of seismic
performance of building structures, is examined .  Details presented are relevant to the model structure shown in
Fig. 1(a).  It is assumed first that strength to elements has been assigned, as in traditional design practice, in
proportion to the flexural rigidity of the prismatic wall elements, ie, Vni  µ lw3i. Hence, the strength of element (1),
in terms of the unit base shear, VE, is 1/15, and that of element (4) is 8/15, as implied in Fig. 1(b). The different
yield displacements of the elements, normalised in terms of the length of element (1), are distinctly shown in Fig.
1(c).  It is evident that in accordance with the bilinear modelling of element behaviour, stiffness should be
defined by:

ki = Vni/Δyi (4)

stating that, contrary to traditional usage, stiffness is proportional strength!

Designers who, for the purpose of defining element stiffness, prefer to use the terms of flexural rigidity, the
following substitution may be made: EcIe = Mn/φy, where Ie is the equivalent second moment of area of the
element section and Ec is the modules of elasticity of the concrete and Mn is the nominal flexural strength of the
base section.

It is thus evident that with the use of bilinear modeling, the strength of an element must be known before its
stiffness can be evaluated.  The translatory stiffness of the system is then Σki.

Element and System Displacement Ductility

The displacement ductility applicable to element i can then be readily defined by the familiar expression,
μΔi = Δui/Δyi, where Δui is the ultimate displacement imposed on the element.
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The superposition of the bilinear response of elements, shown in Fig. 1(c), leads to the corresponding force-
displacement response of the system, as shown by the heavy curved line.  The nonlinear transition from the
elastic to fully plastic behaviour of the system, can again be adequately simulated by a bilinear elasto-plastic
relationship.  This allows the reference yield displacement of the system to be conveniently defined as:

Δy = ΣVni/ΣkI (5)

Because of the different yield displacements of the four elements, under increasing displacements imposed on
the system, simultaneous yielding of all elements is not possible.  As Fig. 1(c) shows, some elements will
commence yielding before the reference yield displacement of the system has been attained, while others will
yield under larger displacements.  Equation (5) allows also the system displacement ductility, μΔ = Δu/Δy,  to be
conveniently defined.  The displacement of the system at the relevant limit state, with reference to its centre of
mass, CM, is Δu.

It is thus seen that if the first seismic design criterion, listed in Section 2, is to be satisfied, the displacement
ductility demand, μΔ, imposed on the system under uniform translation, may need to be restricted in order to
ensure that the displacement ductility capacity of the critical element i, μΔimax, ie, that with the smallest yield
displacement, will not be exceeded.  The displacement ductility capacity of an element will depend on the
quality of detailing, which will ensure adequate curvature ductility to be developed in plastic hinges[5].

Figure 1(c) illustrates a situation[3] where the system displacement is to be limited to the maximum acceptable
displacement for element (4).  With Δy4 = 0.5 and μΔ4max = 5, Δu = 5 x 0.5 = 2.5 displacement units.  Hence the
system displacement ductility demand must be limited to μΔ = 2.5/0.58 = 4.31. The value of Δy was evaluated
with Eq. 5.  As Fig. 1(c) shows, all other elements will be subjected to smaller displacement ductility demands.

The Assignment of Strength to Elements

It is shown in Fig. 1(c), as stated earlier, that, irrespective of their strength, elements subjected to increasing
identical displacements will commence yielding in a predetermined sequence.  It may, therefore, be construed,
that the strength to elements of such a system could be assigned arbitrarily.  Limitations on this arbitrariness
stem from rational engineering practice in providing the chosen strength and the consideration of the effects of
this choice on the seismic response of the system.

It will be postulated in Section 4 that the critical quantity affecting the torsional response of  ductile structural
systems is the strength eccentricity, ie, the distance between the centre of mass, CM, and the centre of strength,
CV, defined by eq. (6).  The significant advantage, which an arbitrary but astute choice of element strengths
offers to the designer, is the deterministic location of CV.  As a subsequent example will show, the designer is
now in a position to choose a strength eccentricity that is perceived to minimize the detrimental effects of
torsional phenomena. With the traditional practice, embodied in most building codes[1], such a choice was not
possible.  To illustrate this simple concept, the structure shown in Fig. 1(a), slightly modified, as shown in Fig.
2(a), will be examined.  The four wall elements are interconnected by an infinitely rigid floor diaphragm.
Hence, when this floor is subjected to translation without twist, the response of the four elements will be as
presented in Fig. 1(c).

Figure 2:     Strength and Stiffness Relationships in Multi-element Ductile Translatory Systems
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When strength to the elements in this 1-2-3-4 type structure is assigned in accordance with traditional practice,
as in Fig. 1(c), the centre of the strength, CV, is located to the right of the centre of mass, CM.  This location, ie,
the strength eccentricity, is found from:

evx = xiVni/ΣVni (6)

where xi is the distance of element i, with a nominal strength Vni, from CM.  In this case it is found that evx =
0.188A. Because element strengths were made proportional to the traditionally defined element stiffness ie, EI,
CV coincides, as Fig. 2(a) shows, with the centre of rigidity, CR, of the system.  Element strength so established
are shown to scale, in terms of the unit base shear, by the small horizontal bars in Fig. 2(b).

Using simple experience-based engineering judgement, designers may distribute strengths to elements, without
changing the total base shear capacity of the structure, VE, in such a way that the strength eccentricity is
eliminated.  For the system presented in Fig. 2(a), for convenience named the 1-2-3-4 structure, element
strengths may be readily redistributed in such a way that the new location of the base shear, VE_ = VE, will
coincide with CM.  Thereby evx = 0.  The relative magnitudes of element strengths so found are shown by dots in
Fig. 2(b).

Because element stiffness is proportional to element strength (eq. (4)), the centre of rigidity, CR¢, associated
with evx = 0, as shown in Fig. 2(a), will be at a different location.  It should be noted that whenever the designer
changes the originally assumed nominal strength of an element, its stiffness will also need to be proportionally
changed.  A set of element strengths will result in a specific stiffness eccentricity, a quantity assumed in the
existing design procedures [1] to be constant once element geometry is finalized.

Another example is considered in Fig. 2(c).  The same walls, as in Fig. 1(a), are used, except the positions have
been changed, with the largest wall being placed at the left edge.  The ensuing strength eccentricity in this 4-1-2-
3 structure is now -0.187A.  Strength redistribution, different from that used for the 1-2-3-4 structure, will also
eliminate the strength eccentricity, and hence significant torsional phenomena.  The location of CR¢, associated
with the latter distribution of strengths is seen in Fig. 2(c), while element strengths, corresponding with the two
locations of CV, are plotted in Fig. 2(d).

When evx = 0.188A, the reference yield displacement of the system is from eq. (5) is Δy = 1.00/1.727 = 0.58, as
shown in Fig. 1(c).  The restriction on the system displacement ductility demand, to ensure that under uniform
translation the capacity of element (4), μΔ4max = 5.0, is not exceeded, was described in Section 3.3 and is
illustrated in Fig. 1(c).

Very significant redistribution of element strengths, relative to those assumed in Fig. 1(c), has relatively small
effects on expected overall translatory response.  Element strengths, resulting in zero strength eccentricity, as
shown in Figs. 2(a) and (b), and corresponding stiffness values indicate that Δy = 0.66.  Therefore, the system
displacement ductility demand should be restricted to μΔ = Δu4/Δy = 5 x 0.5/0.66 = 3.79.

TORSIONAL PHENOMENA

The Traditional Approach to Earthquake-induced Torsion in Buildings

Design approaches considering torsional effects during seismic excitations of structural systems, as incorporated

in building codes (1,6) are very similar.  They are based on linear elastic behaviour under the application of
lateral forces.  Because the principles and applications involved are well established, a detailed description is not
provided here.  Highlights of the relevant features, particularly those fundamentally different from those
proposed here, are:

The torque to be resisted within the elastic domain of response results from the stiffness eccentricity, er, of the
storey shear, ie, the distance between the centre of mass, CM, and the centre of rigidity; CR, of the
system.  Element stiffness are based on section geometry only, ie, relevant EI values.  Strengths are
assigned proportionally to this stiffness and element displacement.
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For design purposes this eccentricity, er, is modified to allow for factors which may adversely affect the strength
of elements situated at various positions within the plan of the building.

The aim of the design is to provide strength to elements, additional to that resulting from satisfying criteria of
equilibrium and compatibility of elastic deformations.  Because elements at different locations are
affected by different specified values of design stiffness eccentricities, storey shear capacities so
derived, will increase as the stiffness eccentricity increases.  Thereby a corresponding reduction in the
system displacement ductility demand can be expected.

Existing codified procedures do not address the amplification of element displacements as a consequence of
torsional effects on inelastic, ie, ductile structural response.  Neither are features associated with the
bilinear modelling of element response, as discussed in Section 3, necessary to quantify inelastic
displacements, considered in these codes.  Strength eccentricity is not considered.

The principal aim of recent studies (3) was to explore the behaviour of fully or partially plastic mechanism, as
affected by system twist, and to find approaches which would possibly enable element displacements at the
ultimate limit state to be directly addressed.  To this end structural models, ie, mechanisms, relevant to
torsionally unrestrained and restrained systems were introduced.  A brief examination of these is presented in the
next sections.

Torsionally Unrestrained Ductile Systems

The simplest forms of torsionally unrestrained systems with respect to a base shear, VEy, are assembled in Fig. 3.
For the sake of simplicity rectangular wall elements, properties of which were presented in Section 3, are used
again.

With the appropriate evaluation of the storey yield displacements, the same principles apply also to ductile
frames[7]. An important property of these ductile systems is considered to be the location of the centre of
strength or centre of resistance, CV, of the system, defined by eq. (6).

For the chosen examples in Fig. 3, element strengths have been deliberately assigned so that CV coincides with
CM, and hence the strength eccentricity, evx, is zero.  This implies that when, under the action of the base shear,
VEy, all elements develop their nominal strength, no torque is generated.  Because transverse elements, shown in
Fig. 3, providing base shear resistance, VEx, in the x direction, are located in single plane, no restraint against
twist, should this occur, is available.  It is for this reason that these systems have been designated [3] as
torsionally unrestrained.

Figure 3:   Examples of Torsionally Unrestrained Systems

Strength eccentricity is eliminated in the system shown in Fig. 3(a) when element nominal strengths, Vni, satisfy
static equilibrium requirements.  It may be shown, however, that there will be a stiffness eccentricity.  Therefore,
in the elastic domain of response a twist of the system will occur.  This in turn will engage the rotary inertia of
the distributed mass.  As a corollary it will be found that when strengths to elements (1) and (2) in Fig. 3(a) have
been assigned so that there is no stiffness eccentricity (erx = 0), there will be a strength eccentricity (evx ¹ 0).

The system in Fig. 3(b) shows exceptional perfect symmetry with respect to the y axes.  Elements (1) and (2) are
assumed to have nominal strengths of 0.5VEy.  With identical wall lengths, lw, element stiffness are, therefore,
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also identical.  Hence erx = evx = 0.  Element deformations in both the elastic and inelastic domains of response
will be identical and twist should not occur.  Fig. 3(c) shows, in terms of VEy, a multi-element system,
traditionally defined as being statically indeterminate.  However, when ductile response is addressed, as
explained in Section 3.5, strength allocation may be arbitrary.  Of the infinite possibilities the designer may
chose one attractive solution, whereby, for example, strength eccentricity is eliminated.  Figure 2 illustrated
examples how this could be achieved.  In the absence of strength eccentricity, no torque need to or can be
sustained by the structure in Fig. 3(c) when, with all elements yielding, the ultimate limit state is being
approached.  However, because erx ¹ 0, in the elastic domain system twist will be inevitable.

In real structures the conditions depicted in Fig. 3 will not be possible to be achieved because the probable
strengths of the elements will be inevitably different from those intended.  Consequently some strength
eccentricity will exist.  The full strength of all elements can thus be engaged only if a torque, corresponding to
evx, can be introduced.  Under static conditions this situation cannot arise.  However, with the twist-induced
rotary inertia of the distributed mass during dynamic response, the development of the full system strength,
associated with ductile response of all elements, will generally occur.

Torsionally Restrained Ductile Systems

Whenever elements, transverse to translatory ductile ones, are present and have

sufficient strength to resist a torque resulting from strength eccentricity, system twist will be restrained.  The
example structure shown in Fig. 2(a), with transverse elements present, shown with dashed outlines, is used to
illustrate relevant features of behaviour.  With a known static torque the forces induced in the transverse
elements can be compared with their strength.  Due to the rotary inertia of the mass, torsion-induced forces in
these elements are likely to increase.  The acceptable twist is controlled by the displacement capacity of the
translatory elements.  For the 1-2-3-4 structure Fig. 4(a) shows diaphragm displacement patterns associated with
uniform and non-uniform translation with the optimum angle of twist, θt = 1.95/A.  The latter is controlled by the
displacement ductility capacities of elements (3) and (4).  The corresponding idealized force displacement
responses of all four elements are presented in Fig. 4(b).  Element responses associated with strength allocations
corresponding to evx = 0 are shown in Fig. 4(c).

Figure 4     Limiting Displacement Profiles for a Torsionally Restrained Example Structure

This review suggests that, even with a significant strength eccentricity of the order of 0.1A, this ductile example
structure should be tolerant with respect to torsional demands, also when dynamic effects are taken into
consideration. An astute designer may use the available freedom in the choice of strength allocation to elements,
to arrive at a solution that results in a moderate strength eccentricity.  This then can be expected to result in more
even utilisation of the displacement ductility capacities of all elements.

CONCLUSIONS

The primary aim in the seismic design of structural systems should be to address displacements corresponding to
the stipulated performance criteria.  Limitations relevant to the ultimate limit state are dictated by displacement
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ductility capacities that can be provided for elements, and the realistic evaluation of the absolute magnitudes of
the corresponding displacements.

Reliable estimates of displacement ductilities can be made only if the estimation of the reference yield
displacements of the system and its constituent elements is realistic.  Current widely used design practice
generally evaluates erroneously as well as grossly underestimates the reference yield displacements of reinforced
concrete elements.

Studies, utilizing the exposure of some prevalent myths and fallacies in seismic design [8], drew attention to the
fact that the yield displacement of an element is rather insensitive to the strength provided.  For seismic design
purposes, with few exceptions, the yield displacement of an element should be considered as being a geometric
property, independent of element strength.  This enables a simple bilinear modelling of the elasto-plastic
monotonic behaviour of elements.

Contrary to traditional definitions, element stiffness, defined as the ratio of nominal strength to reference yield
displacement, is strength-dependent.  When features of ductile seismic response are addressed, the flexural
rigidity, EI, of reinforced concrete elements, widely used for the purpose of estimating their stiffness should,
therefore, be considered inappropriate, unless it is radically adjusted,

The utilisation of the above conclusions allows the the designer to assign strength to elements in an arbitrary
manner dictated only by the desire, by means of the appropriate choice of strength eccentricity, to achieve
optimal seismic performance.

It is suggested that in the formulation of a design strategy, catering also for the torsional response of ductile
system, attention be focused on expected displacements rather than on torsional resistance.  To this end the most
important relevant parameter is claimed to be the strength rather than the traditionally used stiffness eccentricity.

These principles allow the system displacement ductility capacity, necessary to ensure that at the ultimate limit
state displacement demands will not exceed corresponding capacities of critical elements, to be realistically and
readily determined.

It is argued that the rotary inertia of the distributed mass of a system, mobilized by system twist, will beneficially
affect element displacement ductility demands in torsionally unrestrained systems.  The opposite is considered
applicable to torsionally restrained systems.  The validity of these postulates is being studied further.
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