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3D-SEISMIC WAVES IN A DIPPING SURFACE LAYER
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SUMMARY

The method of generalized ray, originally developed for wave guides of parallel layers, was
recently generalized to include the divergence effects of up to two layers overlying a penetrable
half-space bedrock. The objective of the paper is to investigate the waves from an oblique single
point force source, buried and, as well in the limits, acting on the surface and at the interface.
Using the source ray of the vertical force, we determine the source rays of the horizontal force
components by rotating the Cartesian coordinates and comparing the emittance functions. The
phase functions, or arrival times, of a given wave mode for a fixed source - receiver configuration
remain invariant. Successive total reflections at the free surface and refraction at the interface
render the solution in the Laplace transform domain. A modified Cagniard-de Hoop technique is
applied to corresponding pairs of generalized rays to obtain their inverse Laplace transforms. The
total seismic response is obtained by summing responses due to all generalized rays arriving at a
receiver in a prescribed observation time. The present semi-numerical solution as such serves also
as a benchmark for the direct numerical analyses by Finite Difference or Finite Element
Discretization.

Recently, the dynamic Green's functions of the linear elastic background of the visco-plastic soil
were applied to model the waves emitted from "localized" plastic sources in the region of the
plastic zone within the background. The latter, so called multiple field approach, is worked out,
currently under the restrictions of plane strain or plain stress, at the expense of an additional
convolution integral.

INTRODUCTION

The expansion into plane waves of the spherical waves emitted from a point source renders ray integrals which
are ordered systematically according to their arrival times at a fixed receiver in a given source - receiver
configuration, for a review see Pao and Gajewski [1]. For line sources of various kinds acting in a layered half
space, the generalized ray integrals are numerically integrated using a modified Cagniard-de Hoop method, see
e.g. [2-7]. A dipping surface layer overlying penetrable bedrock was considered at first in [5] as the wave guide
of SH-waves emitted from a parallel line source. The transformation of the ray integrals for rotated coordinate
systems was developed and consequently applied, see again [2-7]. Using Fourier spectra of the received signals
and the Dasgupta-Sackman numerical version of the elastic-viscoelastic correspondence, phenomena like the
formation of two Rayleigh waves propagating in the viscoelastic half space were explored in [8]. Axisymmetric
waves due to point loads have been considered in [1] by means of the Laplace-Hankel transform and extended to
the problem of an obliquely applied concentrated force. However, these solutions are only applicable to the
parallel layer case. Since we focus on the extension of the plane problem of dipping layers to the three-
dimensional wave systems produced by such an oblique single force, we stick to the Cartesian coordinates and
consider the three non vanishing displacement potentials of the source rays, respectively and individually for the
force components in the vertical and in the two horizontal directions of the infinite space. We also refer to [9]
and [10] for preliminary work on the asymmetric point source. Since the source rays of a vertical single
instantaneous force are readily available, we use the method of rotated coordinates to determine the non
vanishing potentials of the waves emitted by the two horizontal force components. For the plane problem the line
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source of vertical forces was rotated into horizontal position, thus providing the solution to a horizontal line of
forces, see e.g. [4] for the surface load. In the three-dimensional case a second coordinate rotation about the
vertical axis is performed and, thus, provides the full set of nine non vanishing displacement potentials. Figure 1
illustrates the soil models when restricted to a single surface layer.

SOURCE RAYS FROM AN OBLIQUE POINT FORCE

The solution for the vertical point force with time signature f(t), not necessarily of impulse type,

     Fz t = Qz f t δ x δ y δ z – z0 ez (1.1)

in terms of the displacement potentials (according to the Helmholtz decomposition) renders the source rays in
the infinite elastic space. The P-wave,

   ϕ z x, y, z, s = s2 Qz F s –∞
∞

–∞
∞ SP

z exp sgP dξ dκ

gP = iξ x + iκ y – η z – z0 , η = c –2 + ξ2 + κ2
(1.2)

and the S-wave,

   ψx
z x, y, z, s = s2 Qz F s

–∞
∞

–∞
∞ SSx

z exp sgS dξ dκ (1.3)

   ψ y
z x, y, z, s = s2Qz F s

–∞
∞

–∞
∞ SSy

z exp sg S dξ dκ

gS = iξ x + iκy – ζ z – z0 , ζ = C –2 + ξ2 + κ2
(1.4)

   ψz
z x, y, z, s = 0 (1.5)

The density of the carrier medium enters explicitly in addition to the two body (P- and S- ) wave speeds, c and C,
respectively,

   
F s =

f s

8π2s2ρ
(1.6)

and the emittance functions become with the direction factor with respect to propagation in the positive vertical
direction, respectively,

   SP
z = –εz ,  

   SSx
z = –

iκ
ζ ,  

   SSy
z =

iξ
ζ . (1.7)

Equations (1.2)-(1.5) can be rewritten in terms of rotated coordinates, say at first rotated clockwise about the y-
axis such that

  xr = z , z r = – x (1.8)

Hence, consequently,

  Q
z
r = –Q

x ,

the (negative) component of the horizontal force. The expansion into plane waves requires invariance of the
phase function and preservation of the amplitudes. For sake of convenience, we put the point source into the
origin, furthermore, the wave modes remain understood:
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   g = gr= iξ x + iκ y – η,ζ z = iξ r xr + iκy – η,ζ r z r
,     S dξ dκ = Sr dξr dκ (1.9)

From equations (1.2) and (1.4) we note, the rotated slowness are understood,

   dη
dξ

=
ξ
η

r

,
dζ
dξ

=
ξ
ζ

r

Hence, from the first of equation (1.9) follows upon substitution of equation (1.8), for each wave mode,

   i ξ = ηr, ζr , – η, ζ = i ξr (1.10)

and, substituting dξ into the second equation (1.9), we get, equation (1.10) is used to eliminate the slowness in
the unrotated directions, the source functions of the horizontal force excitation,

   
S

P
z, r = ε

z, r

i ξ r

ηr
= S

P
x =

i ξ
η ,  

   SSx
z, r = –

iκ
ζr

= SSz
x = –

i κ
ζ

,  
   S

Sy
z, r = ε

z, r
= S

Sy
x = – ε

z (1.11)

The three non vanishing potentials are, the emittance functions in equation (1.11) are properly recalled,

   ϕ x x, y, z, s = s2 Qx F s
–∞
∞

–∞
∞ SP

x exp sgP dξ dκ (1.12)

   ψx
x x, y, z, s = 0 (1.13)

   ψy
x x, y, z, s = s2 Qx F s

–∞
∞

–∞
∞ SSy

x exp sgS dξ dκ (1.14)

   ψz
x x, y, z, s = s2 Qx F s

–∞
∞

–∞
∞ SSz

x exp sgS dξ dκ (1.15)

Subsequently, we rotate the coordinates about the vertical axis, such that

  xrr = y , yrr = – x (1.16)

Substituting into the phase invariance, superscript rr is understood in the first of equation (1.9), analogously to
the above, renders now the relations,

   κ rr = – ξ , ξrr = κ (1.17)

Note the invariance of the sum of squares of these horizontal slowness.

The second of equation (1.9) becomes

   Sx dξ dκ = Srr dξrr dκ rr (1.18)

and thus yields the new set of emittance functions upon elimination of the unrotated slowness,

   S
P
x, rr = S

P
y = –

i κ
η ,  

   S
Sy
x, rr = S

Sx
y = ε

z ,  

   SSz
x, rr = SSz

y = –
i ξ
ζ (1.19)

The displacement potentials for the lateral horizontal force with respect to the original coordinate system are
consequently identified as
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   ϕ y x, y, z, s = s2 Qy F s
–∞
∞

–∞
∞ SP

y exp sgP dξ dκ (1.20)

   ψx
y x, y, z, s = s2 Qy F s

–∞
∞

–∞
∞ SSx

y exp sgS dξ dκ (1.21)

   ψy
y x, y, z, s = 0 (1.22)

   ψz
y x, y, z, s = s2 Qy F s

–∞
∞

–∞
∞ SSz

y exp sgS dξ dκ (1.23)

Since one and the same time function applies to all three force components, the resulting displacement potentials
are given by simple summation of the individual source functions, when pre multiplied by the amplitudes of the
force components,

   ϕ x, y, z, s = s 2F s
–∞
∞

–∞
∞ SP exp sg P dξ dκ , 

  SP = Qx SP
x + Qy SP

y + Qz SP
z    =

1
η Qx iξ – Qy iκ – Qz εz

, (1.24)

   ψx x, y, z, s = s2F s
–∞
∞

–∞
∞ SSx exp s gS dξ dκ ,  

  SSx = Qy SSx
y + Qz SSx

z    = Qy εz – Qz
iκ
ζ , (1.25)

   ψy x, y, z, s = s2F s
–∞
∞

–∞
∞ SSy exp s gS dξ dκ ,  

  SSy = Qx SSy
x + Qz SSy

z    = – Qx εz + Qz
iξ
ζ , (1.26)

   ψ z x, y, z, s = s2 F s
–∞
∞

–∞
∞ SSz exp s gS dξ dκ ,  

  SSz = Qx SSz
x + Qy SSz

y    = –
1
ζ Qx iκ + Qy iξ

. (1.27)

SOURCE RAYS FROM AN OBLIQUE SURFACE OR INTERFACE POINT FORCE

The emittance functions of the point source at the traction-free surface of a half space are derived by first
receiving the reflected rays originally emitted from the buried source in the upward direction, and subsequently
taking the limit of the source depth to zero in

   ϕ
Pp = s2F s

–∞
∞

–∞
∞ SP RPP exp s gPp dξ dκ (2.1)

   ψP s,j = s2F s
–∞
∞

–∞
∞ SP RPS, j exp s g Ps dξ dκ (2.2)

   ϕ
S,kp

= s2F s
–∞
∞

–∞
∞ SS,k RS, kP exp s g Sp dξ dκ (2.3)

   ψS,k s,j = s2 F s
–∞
∞

–∞
∞ SS,k RS,k S,j exp sg Ss dξ dκ (2.4)

Note the direction factor in the emittance functions (1.24)-(1.27) is negative for the upward propagating rays.
The numbers k of the incident S-wave and the numbers j of the reflected S-wave indicate the x, y, z -components,
respectively.

The notation follows from the incident source rays given by equations (1.24)-(1.27) and the reflection
coefficients of the potentials of three-dimensional plane waves at the traction free surface are understood, [11]
and [12]. Since the wave mode is determined by the last ray segment, the potentials are given by proper
summation: the direct rays emitted from an oblique force are added and denoted by the subscript zero, also
taking into account the downward propagation, the direction factor is positive in equations (1.24)-(1.27), p or s
indicate the mode of the downward pointing rays,
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   ϕ p = ϕ 0 + lim
z 0 → 0

ϕ P p + ϕ S,k pΣ
k

,  

   Sp = S0p + SP RP P + SS,k RS,k PΣ
k (2.5)

   ψ s, j = ψ 0s,j + lim
z 0 → 0

ψP s,j + ψS,k s,jΣ
k

,  

   Ss, j = S0s,j + SP RP S, j + SS,k RS, k S,jΣ
k (2.6)

The phase functions are simply given by the two wave modes as above and the absolute value of the vertical
coordinate is simply substituted by   z > 0 .

When considering the reflections of the downward pointing rays emitted by the buried source at the "parallel"
interface at the distance z = h from the surface between two dissimilar half spaces, yields the potential ray
integrals within the surface layer and, taking the limit of the source depth to layer thickness, thus the solution for
the interface source. In this case, the resulting rays are propagating upward. The source rays in the adjacent
medium are determined by substituting the three-dimensional transmission coefficients of plane waves at the
plane interface, however, these rays are oriented downward and not further evaluated. In the first case, we have,
analogously to equations (2.1)-(2.6), however with the three-dimensional reflection coefficients of plane waves
taken at the interface, the direction factor is positive in equations (2.7)-(2.10),

   ϕ
pP

= s2F s
–∞
∞

–∞
∞ SP RPP exp s gpP dξ dκ , (2.7)

   ψp S,j = s2F s
–∞
∞

–∞
∞ SP RPS,j exp s g pS dξ dκ , (2.8)

   ϕ
s,k P

= s2F s
–∞
∞

–∞
∞ SS,k RS,k Pexp s g sP dξ dκ , (2.9)

   ψ s,k S,j = s2 F s
–∞
∞

–∞
∞ SS,k RS,k S,j exp sg sS dξ dκ , (2.10)

   ϕ P = ϕ 0P + lim
z0 → h

ϕ pP + ϕ s,kPΣ
k

,  

   SP = S0P + Sp RP P + Ss,k RS, k PΣ
k , (2.11)

   ψS, j = ψ 0S,j + lim
z 0 → 0

ψpS, j + ψs,k S,jΣ
k

,  

   SS, j = S0S,j + Sp R
P S,j

+ Ss,k R
S,k S,jΣ

k . (2.12)

The directly emitted rays carry the subscript zero. They are propagating upwards and the direction factor thus is
negative in the first terms of the emittance functions in equations (2.11) and (2.12). The phase functions are set
up according to the two wave modes and the absolute vertical segment becomes   (h – z)

. In all these cases we
end up with a fully coupled problem.

TRANSFORMATIONS FOR DIPPING LAYERS

A wedge shaped source layer with a dipping angle α measured clockwise against the free surface is considered
next. The source rays from the vertical point force, equations (1.2)-(1.5), are exemplary treated in the rotated
(through α and primed) coordinate system. Wave slowness in the y-direction remains unaffected. Phase
functions and amplitudes are invariant under coordinate rotation. Considering the horizontal epicentral distance
from the wedge tip renders exemplary for the P-wave

   g P = iξ x + iκy – η z – z 0 = gP
′ = iξ′ x ′ – x0

′ + iκy – η ′ z ′ – z0
′

x ′ = x cos α + z sin α, z′ = – x cos α + z sin α, x0
′ = x0 cos α, z0

′ = z0 cos α
(3.1)
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   SP
z dξ dκ = S′ P

z dξ′ dκ (3.2)

Hence, the travel time remains constant for a fixed source-receiver configuration, if and only if the slowness are
related by

   iξ′ = iξ cos α – (η, ζ) sinα, (η, ζ)′ = iξ sinα + (η, ζ) cos α (3.3)

In the rotated coordinates, the reflection of the source ray at the interface is done classically. The reflected P- and
S-waves are subsequently referred to the unprimed coordinates for further consideration. The phase functions are
for the incident P-ray, Snell's law applies,

   g pP = iξ1 x + iκ y – η h – z0 – η 1 h – z , ξ1
′ = ξ ′, h = x0 tan α (3.4)

   g pS = iξ
1

x + iκ y – η h – z 0 – ζ
1

h – z (3.5)

   iξ
1

= iξ′ cos α – (η ′, ζ
1
′ ) sin α ,  

  η1 = c –2 + ξ1
2 +κ 2, ζ1 = C –2 + ξ 1

2 + κ2
(3.6)

PLASTIC SOURCES IN THE ELASTIC BACKGROUND SOIL

In [13], the generalized dynamic Maysel's formula was derived. It contains a time convolution between the
plastic strain (or any strain imposed to the linear background) and the force Green's function and it holds even
for finite bodies. In the incremental form, resulting from stepping the time, non homogeneous initial conditions
are to be considered as well. In the time Laplace domain, note the slightly different notation, the particular
solution of displacements resulting from these sources becomes

     ui* x0; s =
V

εαβ
* x ; s σ αβ(i)

x, x0; s dV(x) + ρ
V

uα 0
* x uα ( i) x, x0; s + v α 0

* x uα (i) x, x0; s dV(x ) (4.1)

The dynamic Green's functions of the elastic background (infinite, semi infinite, or layered body), are given
through their displacement potentials and, consequently expanded into plane waves, see the representation given
above, the Dirac Delta function in time is applied in equations (1.1) and (1.6). In plane strain, the source rays
from the line of oblique forces per unit of length are considered and the table of receiver functions is included in
[14].

CONCLUSIONS

Implementations like receiver functions of displacements and stresses, surface receiver functions etc., see [1] and
[14] for the line source and [12] for the twofold simultaneous numerical integration in the course of inversion of
the Laplace transformed ray integrals, are reported elsewhere. In the course of developments in parallel
computing and at increased speeds of modern workstations, the method of generalized ray has become
competitive in computational seismology. The representation of the solution to the single oblique force in
Cartesian coordinates, presented above, is suitable to consider the divergence effect of a dipping layer (including
back scattering of the updip traveling source ray) and as well the phenomenon known as horizontal refraction,
see also[15] for the none-penetrable wedge. The damage statistics of the city of Skopje was reported in [16] and
the relation to the dipping angle of the interface illustrated. The solution serves also as the Green's function of
the linear background of an elastic-viscoplastic soil, where in the plastic zones waves are emitted from so-called
plastic sources, see [14] for the two-dimensional problem. For line sources with random time functions and
correlation theory of generalized rays, see [17].
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Figure 1.  Three models of the soil; (a) a homogeneous half space
(b) a horizontal layer overlying a dissimilar bedrock half space (infinite number of ray integrals)

(c) a dipping layer overlying a dissimilar bedrock half space (finite number of ray integrals).


