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ANALYTICAL METHOD FOR PREDICTING THE RESPONSE OF TIED
CONCRETE COLUMNSTO SEISMIC LOADING

Beni ASSA!, Fumio WATANABE? And Minehiro NISHIYAMA®

SUMMARY

This paper presents an analytical method for the prediction of load-displacement curve of reinforced
concrete beam-columns subjected to simulated seismic loading. The method to predict the flexural
deformation is based on finite element approach which allows for the spreading of inelasticity along
the member. The effect of lateral confinement by transverse reinforcement was included in the
uniaxial stress-strain relations of confined core concrete. A new approach for predicting the stress-
strain curve of confined concrete was also included in this paper.

An analytical method to determine the deformation due to slippage of reinforeing stecls from the
beam to column joint was developed. The method was based on finite element approach utilizing the
bond-slip behaviour of steel bar embedded in concrete. The deformation component associated with
shear was calculated using the method available in the literature.

The accuracy of predictions of the method have been verified by comparing the hysteretic load dis-
placement curves obtained from the computer program with the experimental results published in the
literatures. This comparative study indicated that the analytical method presented in this paper is
capable of predicting the response of reinforced concrete beam-columns to seismic loading with
sufficient accuracy.

INTRODUCTION

The response of Reinforced Concrete(RC) beam-column to seismic loading is commonly represented by its load-
displacement curve under combined axial and lateral cyclic loading. This curve is an important information from
which the ductility and energy dissipation behaviours of RC beam-columns can be determined.

This paper describes an analytical method for predicting the load-displacement curve of RC beam-columns sub-
jected to axial load and uniaxial bending (both monotonic and cyclic loading). Three deformation components
namely flexural, bar slip and shear deformation were considered in the analysis. The uniaxial stress-strain relations
of the constituent materials namely steel and concrete are required for the purpose.

Stress-strain behaviour of confined concrete within the core, significantly affects the load-displacement curve of
RC beam-column, particularly at large deformation state. An analytical methed for predicting the stress-strain
curve of confined core concrete is also presented in this paper. A confinement model was developed based on the
concrete-confining steel interaction and the compatibility in the lateral expansion.
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2. FLEXURAL ANALYSIS OF RC BEAM-COLUMNS

A beam-column with central stub shown in Fig. 1. is used as an example problem for the purpose of describing the
method. This form of specimen is generally used by researchers in their experimental investigations to study the
behaviour of RC beam-columns subjected to monotonically and cyclically varying axial and lateral loading,.

The RC beam-column is divided into a number of finite line elements along its lengitudinal axis including two
plastic hinge elements on both sides of the central stub. A RC beam-column finite element with a number of
integration sections is schematically shown in Fig.2. Each section is discretized into layers defined with respect to
the member axis. Each layer that is either the cover concrete, core concrete or reinforcing steel follows the uniaxial
stress-strain relations of materjal.
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Figure 1: Modelling of RC beam-column Figure 2: RC beam-column element

Two independent shape functions are used for approximating the force and deformation fields along the element.
The section forces R, (M, N) are related to the forces at the ends of the element R, (M}, M3, N) using a matrix b
and the section deformations increment ADy (Ag, Ag,) are related to the element end deformations increment
AD, (A8, AB,, Au) using a matrix @. The force interpolation function b is given by Eq.(1) and a deformation

interpelation function @ which is flexibility dependent is given by Eq.(2). By such a fermulation the stiffness of RC
beam-column element can be derived as given by Eqs.(3) and (4).

b(x)=[“‘;% % ‘1’] )
a(x) = £(x) b(x) [F]" @
F= ZbT(x) Fx) B(x) dx (3)
s, =[F]™ {4)

inwhich f = section flexibility matrix; F = element flexibility matrix; S, = element stiffness matrix. The section
flexibility matrix f is determined by simply inverting the section stiffness matrix §, given in Eq. (5).
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in which n=total number of layers; A; = area of i-th layer; f; = moment of inertia of i-th layer with reference to its
own centroid; y; = distance from the centroid of the section to the centroid of i-th layer; E, ; = tangent stiffness of

i-th layer. The tangent stiffness of concrete (both cover and core) and steel are evaluated from the uniaxial stress-
strain relations.

The plastic hinge element is derived by keeping the section deformations (¢ and ¢£,) and forces (M and N)
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constant along the full length ( L) of the element. The interpolation matrix b is equal to 2 X 2 unit matrix. By
substituting unit matrix for the matrix 5 and using L, for L in Eq.(3) yields
F=L, f, (©)

in which f; is the flexibility matrix of the critical section.

The stiffness of the entire structure is determined by direct assembling of the stiffness matrices of the gencral beam-
column elements and the two plastic hinge elements, This assembly process establishes the equilibrium equations
for the entire structure, The beam-column is then analysed for the preseribed axial foree (Ny and curvature { ¢) of
the critical sections. Incremental iterative technique is used for the solution of the equilibrium equations.

2.1 Stress-Strain Relations of Core Concrete Under Monotonic Compression

The uniaxial stress-strain curve of confined concrete is determined by enforcing compatibility in the lateral expan-
sion between concrete and transverse steel system. The response of transverse steel system to lateral expansion of
concrete is represented by the lateral stress-lateral area strain ( f, ~ £, } curve. The lateral area strain is defined as
the change in cross sectional area per unit area of original cross section. Deformational behaviour of concrete
under axial and lateral compression is represented by a set of constitutive relations.

2.1.1 Constitutive Relations For Concrete

A significant number of concrete cylinders reinforced with spiral or circular hoops were tested at the Kyoto Univer-
sity, Japan, under both monotonic and cyclic compression to failure. On the basis of this experimental results, a set
of constitutive relations for confined concrete was derived as given in Egs.(7) to (10)

fee 21433622 )
[ [

Lz _y 0421502 (®)
Lc Fid

80, 2 80+ 40,0072 )
ue c

Eap - 0.0042+0.032022 (10)

c

in which f..= maximum axial stress; £,,= axial strain at maximum axial stress; £, = lateral area strain at peak;

€gp = axial strain at 20% stress drop on the descending branch; f,, = the attainable lateral stress provided at peak

axial load; fc' = the concrete strength; £,,. = strain at peak of plain concrete cylinder.

2.1.2 Lateral Stress-Lateral Area Strain Curve of Transverse Steel

A reinforced concrete cross section with peripheral hoop is shown in Fig.3.a. The steel bars of the peripheral hoop
are divided into a number of column finite elements, whilst the cross-tie (if’ any) 15 idealized as an axial element,
The concrete is discretized into a number of scgments bounded by the peripheral steel bar element and the lines
Joining the centre point and the middle of two nodes. The concrete segment is represented by an axial compressive

element having axial stiffness %, and zero tensile strength as shown in Fig.3.b.

Stifthess of Concrete Element

A concrete segment and its idealized axial element are shown in Fig.3.c. Point O is assumed to be a pin joint. The
stiffness &, of concrete element is defined as the confining force £, required to produce a unit compressive defor-
mation { 4r, = 1 unit ) in the concrete element. It is assumed that the concrete scgment 18 subjected to uniform
lateral stress. Therefore, the axial compressive stiffhess of the element is given by Eq.(11).
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k(_'_ F;‘ =LeSEcr (ll)

Ar, r,

in which s = spacing of the lateral ties; L, = the width of concrete segment measured perpendicular to the element
axis; r, is the length of concrete element; E,., is the stiffness of concrete in the lateral direction as given in Eq.(12).

100 ¢ n12 :
Eer = 3 1) (12)

in which €=2.718 and b_= least lateral dimension of confined concrete core.
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Figure 3: Modelling of Transverse Steel - Concrete Interaction
Stiffness of Steel Element

Two types of element are used to simulate the response of transverse steel system. A column element is used for the
penpheral steel bars, whilst an axial element is used for the cross-ties. The column element is similar to the RC
beam-column element shown in Fig.2 but having cireular cross section. Each section is discretized into layers and
each layer follows the uniaxial stress strain relations of reinforcing steel. The stiffness of the peripheral steel
element was determined similarly to the RC beam-column element as given in Egs.(1) to (5), whilst the stiffness of
the axial element is given in Eq.(13)

AS ES

L
in which A is the cross sectional area of cross-tic and E is the tangent stiffness.

S, = (13)

The stiffness of the entire transverse steel system is determined by direct assembling of the stiffness matrices of the
peripheral steel elements and the axial elements (if any).

Equilibrium Eauati
The mechanism of confinement can be simply explained as follows. Let assume first that there is no lateral steel.
Under axial compression, the plain concrete expands laterally and reaches its lateral expansion capacity when the
axial load approaches the maximum axial load. The presence of lateral steel reduces this lateral expansion by
lateral compression, hence delays the axial load reaching its maximum value. This mechanism is itlustrated in
Fig.4. and formulated in Eqs.(14) and (15)

Ar, + 4d, = Aey, 1y (14)
AF, = k,(Agy, 1, — Ad,) (15)
in which E_,is the free lateral tensile strain of plain concrete section (without transverse reinforcement); d, is the

nodal displacement measured in the direction of concrete element; symbol A indicates that the equations are in
incremental form.

Each node has three degrees of freedom labelled as (j+1), () and (j-1) in Fig.4. The lateral deformation and nodal
force as given in Egs.(14) and (15) are decomposed into two components in the direction of (j) and (j-1) coordi-
nates. As the concrete segment is represented by the axial element, there is no interaction between concrete and
steel in the rotational coordinate (j+1), hence the corresponding nodal force is zero, By applying Eq.(15) at all
nodes produces a set of equilibrium equations in the form of linearized structure's force-deformation increment
relations. The solution of those equations is then carried out incrementally and iteratively for a prescribed value of

£.,t0 produce the ( f, — £,) curve,
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2.1.3 Lotergl Stress at Peak Axial Load

The lateral expansion of concrete at maximum axial load is represented by a straight line given by Eq.(10). This
line is the locus of points corresponding to a pair of lateral stress and lateral area strain values that define the
maximum axial stress of confined concrete, hence named the 'Peak Load Condition (PLC) Line'.

The( f, —£,) curve represents the potential of the transverse steel of providing the confining pressure to the
concrete. By enforcing compatibility in the lateral expansion between concrete and transverse steel at peak axial
load, the attainable lateral siress and lateral area strain can be determined from the intersection between the PLC
Line and the equivatent lateral stress-area strain ( f, — £, ) curve. This prineiple is illustrated in Fig.5. Having the
lateral stress at peak axial load { f,,,), fec, € and £gp are calculated from Eqs.(7), (8) and (9) and the stress-
strain curve of confined concrete is generated.

Softening Region

Eup =0.0042+0.0321ff£
-

Y Lateral area strain, €,
00042 Tap ai peak =

Figure 4: Compatibility at nodes Figure 5; Determination of Lateral Stress at Peak
2.1.4 Uniaxial Stress-Strain Equation For Confined Core Concerete
The equation (16) is used to represent the stress-strain curve of confined concrete.

ax+(B-1)x*
fe=1 (16)
T e (@-2)x+ Bl
in which :
x=lc )
ECL'

= Ec Bec (18)

Jee

2

xgg — {020+ 1.6 +0.30
g =28 { 2)xso (19)
0.2 X80

€30
XSO =— (29)

ECC
E, = 4700y f, MPa (21)

2.2 Stress-Strain Relations of Cover Concrete Under Monotonic Compression
Stress-strain curves for unconfined cover concrete proposed by Mupuruma et al.[1979 1983] are adopted in this

study. The ascending branch is given by a parabola with vertex at the maximum stress point equal to the compressive
strength of concrete, The softening branch is represented by a straight line.

5 0162



2.3 Stress-Strain Relations of Concrete Under Cyelic Compression

Based on the experimental results mentioned in the previous section, the hysteretic models schematically shown in
Fig.6. were derived to simulate the stress-strain relations of concrete under cyclic compression.

Envel aY
The stress-strain curve for monotonic compression was used as the envelope curve for cyclic compression.

Commeon Point
The reloading path intersects the unloading path at the common point. The strain and stress of the common point

(Ecom: from ) are related to the strain and stress ( £,,,. fy.y ) Where loading reversal occurs as given in Eqs.(22) and
(23)

Ecom =0.98 €,,, (22)
Jeom = 0.9 frey (23)
Urloading Path

Unloading path from the reversal point to the common point is given by a straight line. Unloading path from the
common point to the strain axis is given by a parabola with vertex at the zero stress point. The strain of the zero
stress point { £,,,;) is given in Eq.(24)
&, =0.65¢

res rey

(24)

Reloading Path
Reloading path from the strain axis after a complete unloading to the common point is given by a parabola with the
vertex at the zero stress point where the loading resumes. The strain of this point ( £,,) is calculated from Eq.(25)

Eret = 065, (25)

Reloading path from an unloading path or from the common point to the skeleton curve is given by a straight line
from the reloading point through the common point until it reaches the envelope curve,

2.4 Stress-Strain Relationships for Steel

An idealised monotonic curve and a set of hysteretic rules defined by Yokoo and Nakamura (1977) were used as the
stress-strain model for steel reinforcement.

Steess f,

ol B

Figure 6: Hysteretic Rules for Cyclic Loading Figure 7: Bar Slip Deformation

3. BAR SLIP DEFORMATION

Under cyclic moment reversal, cracks across the whole column cross sections may form at both stub-faces of the
column shown in Fig.1. The reinforcing bars are subjected to cyclic pull-push from both sides of the stub inducing
bond deterioration and slippage of steel bars within the stub. Fig.7 shows the fixed end rotation and its resulting
lateral deflection due to slippage of steel bars within the stub. The lateral displacement is calculated from Eq.(26).
D, = "b’; vy L, {26)
in which v, = total slip of the bottom reinforcement from the stub column interface; v; = total slip of the top
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reinforcement from the stub column interface; h = distance from top to bottom reinforcing steels; D, = lateral
displacement; I_= distance from the end support to column stub interface.

An analytical method similar to the model proposed by Filippou et al [1983] was developed to calculate the
curnmulative slip of steel bar from the stub faces. The mehod is based on finite element approach where the steel
bar embedded within the stub is divided into (n-1) elements with equal length, The left end is denoted as 1-st node,
whilst the right end as n-th node. There are two unknowns at each node namely the relative slip of steel from the
surrounding concrete (v) and the strain in steel (£,). Following a mixed two field approximation, the vector of
unknowns at the right end is related to the vector of unknowns at the left end as given in Eqs.(27) to (29)

" =8,z 27)
Sn = Tn Tn—l ......... Tz (28)
1 -1ry
—EEv.m'f’L AcEg i EEv,III’ L AEg;
T = , : @)
1 ~=L 1 =L
2 2

in which z” = { Av, Ag, } is the incremental state vector at node; E, = secant stiffness of bond slip relations; E, =
secant stiffness of stress-strain relations of reinforcing steel; L = the length of element; A, = the sum of the cross

sectional area of all reinforcing bars in one layer; Y= the sum of the perimeter of all reinforcing bars in one layer;
subscripts i and i+1 indicate the parameter is evaluated at node i and (i+1), respectively.

Bond-slip relations for monotonic loading reported in the literature [Fujii et al, 1994] was used for the envelope
curve and the hysteretic rules suggested by Viwathanatepa et al [1979] was used for cyclic loading. By solving
Eq.(27) for both top and bottom layers of steel bars, the total slip at both ends (v, and v, ) are calculated and the bar
slip deformation is evaluated from Eq.(26).

4. SHEAR DEFORMATION

Slender beam-columns designed according to the current RC seismic design provisions will have sufficient amount
of lateral reinforcement to prevent excessive diagonal tension cracks, hence exhibit small shearing deformation
relative to flexural deformation. Therefore, in this research shear deformation was determined using a simplified
method suggested by Park and Paulay [1975] that assumes elastic response of RC member to shear.

5. COMPARISON OF THE THEORETICAL PREDICTIONS WITH THE EXPERIMENTAL RESULTS

The accuracy of predictions of the analytical method presented in this paper has been investigated by comparing
hysteretic lateral load-lateral displacement curves obtained from the computer program with the experimental re-
sults reported in the literatures [Azizinamini et al. 1992 1994, Soesianawati and Park 1988, and Muguruma and
Watanabe 1990]. Several selected results are presented in this paper. Figs.8.a. and 8.b. show the lateral load-lateral
displacement curves of the specimen D60-15-4-25/8-0,2P [Azizinamini et al 1994] and specimen Unit-9
[Soesianawati and Park, 1988], respectively. Fig.9. shows the procedure to determine the lateral stress at peak axial
load of Unit-9. Fig.10. shows the siress-strain relations of an extreme layer within the core of specimen NC2
[Azizinamini et al. 1992] obtained from the computer output.

5. CONCLUSIONS

An analytical method for the prediction of load-displacement curve of reinforced concrete beam-columns sub-
jected to simulated seismic loading has been presented in this paper. Three deformation componenis namely flexural,
bar-slip and shear deformation were included. The results of the theoretical predictions were verified by comparing
the load-displacement curves obtmned from the computer program with the experimental results reported in the
literatures, ‘This comparative study indicated that the analytical method presented in this paper is capable of pre-
dicting the response of reinforced concrete beam-columns to seismic loading with sufficicit accuracy.
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