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SUMMARY

The seismic performance of building structures is a direct function of the maximum interstorey
drifts which occur during strong seismic ground motions.  Maximum drifts can be estimated using
the concept of drift spectra.  This paper presents a simple technique for deriving drift spectra for
frame structures which is based on elementary shear-beam vibration theory.  These spectra,
together with recently proposed natural period bound estimates for framed building structures, are
then incorporated into a simple performance-based seismic design procedure.  A numerical
example illustrates the proposed approach.

INTRODUCTION

As is known, structural and nonstructural damage due to earthquake is a result of excessive strains. However, in
performance based design it is more convenient to use displacement or drift as the controlling criterion of
structural performance. This is because these parameters are familiar and easy to compute; also, field data and
experimental research results are readily available. As noted in Vision 2000 [1], the displacement-based design
approach begins with establishing target levels of displacement or drift consistent with the selected performance
objectives. The target displacement or drift should conform to the anticipated ductility capacity of the planed
structure.

In present design practice post-yield drifts are estimated by factoring linear drifts through displacement
amplification factors. There is no agreement among seismic codes regarding the numerical values of these
factors. However, it is now believed that for the medium and long period ranges, values on the order of the force
reduction (or modification) factors, or somewhat smaller, rather than the UBC ones (i.e. Rw = 3/8 where Rw  =
force reduction factor at working stress level) are reasonable estimates (e.g. the  Cd values in NEHRP 1998 [2]).

For multistorey buildings, roof displacement per se is not a useful performance criterion because it represents
only an average value of the interstorey drift. For these structures a direct measure of drift is therefore preferable.
The concept of a drift spectrum is not new. Iwan [1997] developed drift spectra for uniform cantilever shear
beams to predict interterstorey drift demand of frames at their base level. These spectra were obtained from the
solution of the damped wave equation in a one-dimensional continuum. Iwan’s purpose was to show that drift is
likely to be higher for frames located in the near field of a strong earthquake. Yet, since drift is a pivotal
performance criterion, such spectra may be useful tools for the seismic design of frames in general.

The purpose of this study is first to present a simple technique for deriving drift spectra for frame structures
which is based on elementary shear-beam vibration theory. These spectra, together with recently proposed
natural0 period bound estimates for framed building structures [Goel & Chopra 1997] are then incorporated in a
simple performance-based design procedure. A numerical example illustrates the proposed approach.
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BASIC THEORY

Modelling of regular moment-resisting frames as shear beams is a common approximation in structural design.
Moreover, uniform shear-beams can simulate the behaviour of actual frames, even when the bottom storey is
somewhat higher than the typical storey, which is often the case. The following equation defines the force-
displacement relationship for the elastic shear beam:

du/dx =V/(GA)                                                                                                                                                       (1)

in which  u  = lateral displacement at height “x” above the base, V = shear force at this level, and GA = shear
beam stiffness. Formulas for evaluating GA in terms of beam and column stiffnesses are readily available in the
literature. One of the most common formulas for uniform frames is given below [Wilbur 1935]:

GA  =  [12 E / h ] [ 1/ Σ kc   +  1/ Σ kg  ] 
-1                                    (2)

In which E = modulus of elasticity, h = storey height, kc  = Ic/h, kg = Ig/lg are the respective stiffnesses of the
columns and beams, I = element moment of inertia and lg = beam span. The summation is over the storey
columns and beams.

The maximum drift in the frame occurs at the base, and can be expressed as follows:

Dr(0) = du/dx(0) = V0/ (GA)                                                                                                                                   (3)

In which Dr(0)  = base drift ratio (normally expressed as the ratio of storey drift to storey height), and V0 = base
shear. For a shear beam subjected to seismic excitation, the base shear can be expressed as:

V0 = (Saf/g) W                                                                                                                                                         (4)

in which W = total weight of  the uniform beam structure, g = acceleration of gravity, and Saf = the shear beam
spectral acceleration, which includes the effect of higher modes [Heidebrecht & Lu 1988].

The fundamental period T1 of a uniform cantilever shear beam is given by:

T1 = 4/[WH/(gGA)]                                                                                                                                              (5)

in which H = beam length. Combining eqns. 3, 4 and 5 yields

Dr(0) = T1
2Saf /(16H)                                                                                  (6)

Equation 6 can be used to determine the maximum drift ratio of a uniform shear beam resulting from any
earthquake time-history, provided Saf is known.

Several approximations can be used to simplify the calculation of Dr(0). The first one is to calculate the drift
using only the first mode of the shear beam. This approximation is suitable for low-rise frames, say below 10
storeys, in which the response is dominated by the first mode. It can easily be shown that the following relation
holds for the first mode drift Dr1(0):

Dr1(0) = π/(2H)u(H)                                                   (7)

u(H) = (4/π)Sd                                                                         (8)

in which Sd = the spectral displacement at the fundamental period T1 . Assuming the harmonic relationship
between spectral displacement and spectral acceleration, namely

Sd =[T1
2/ (4π2)] Sa                                                                    (9)

and substituting from eqns. 7 and 8 leads to:

Dr1(0) = T1
2 Sa / (2π2H)                                              (10)
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Equation 10 can be used to determine the first mode drift ratio directly from the spectral acceleration of the
record. Alternatively, the first mode drift can be obtained directly from the spectral displacement by substituting
eqn. 8 into eqn. 7:

Dr1(0) = 2 Sd / H                                                    (11)

As a second approximation one can assume that Saf  ≈ Sa in eqn.6, which leads to:

 Dr(0) ≈ Dr2 (0) = T1
2 Sa /(16H)                                                            (12)

COMPUTATION OF DRIFT SPECTRA

A simple and useful parameter for characterizing the frequency content of earthquake ground motions is the ratio
a/v in which a = peak ground acceleration and v = peak ground velocity of the earthquake record. Motions with
high a/v generate significant response in short period structures, whereas those with low a/v generate significant
response in long period ones. If a is expressed in units of g and v in m/s, then a/v ratios for actual earthquake
records can range from about 0.3 to over 3; typical intermediate values (which characterize ground motions in
the west coast of Canada and the U.S.) are in the neighbourhood of 1.

Several ensembles of actual earthquake records with different a/v ratios have been selected [Naumoski,
Heidebrecht and Rutenberg 1993] for use in design and research. Each ensemble comprises 15 time-histories in
order to ensure that the variability of amplification and duration is included. Three of these ensembles are used in
this paper; their designation and mean a/v ratios are follows:

NL(low):  mean a/v = 0.7;  NI (intermediate):  mean a/v = 1.0;   NH(high): mean a/v = 2.0

Figure 1 shows the Dr(0), Dr1(0) and Dr2(0) spectra calculated from the mean plus one standard deviation
(M+SD)  response spectra of the three ensembles noted above, with peak ground velocity v normalised to 1m/s,
and for  a reference building height H=30m. Spectra for other values of v and H can be determined by scaling
these curves directly in proportion to v and H. This figure shows that Dr1(0) generally underestimates the true
drift Dr(0), but that Dr2(0) envelopes the  true drift except for long period structures (T > 2.0s) subject to the NH
ensemble. However, for T < 1.0s Dr1(0) is a very good approximation of the true drift for all three ensembles.
Consequently, by using eqn. 12, conservative estimates of the drift spectrum can be determined directly from the
acceleration spectrum.

A comparison of the true drifts generated by each of the three ensembles shows that the NH ensemble produces
the largest drifts when T < 0.5s, the NI ensemble drifts are the largest for 0.5s < T < 1.0s, and NL produces the
largest drifts when T > 1.0s.

An important cautionary observation is that the curves in Fig.1 are only applicable in the realistic range of
periods for frames with H = 30m. Depending upon whether the frames are of reinforced concrete (RC), or steel,
and for RC frames upon the extent of cracking, natural periods for frames of this height are expected to be in the
range of 1.0 to 1.8 seconds. Goel & Chopra [1997] have proposed  upper and lower bound fundamental period
formulas (TU and TL respectively) for both steel and RC frames; for RC frames these take the form:

TL  =  0.0466 H0.90                   (13)

TU  =  0.0670 H0.90                              (14)

in which H is expressed in unit of metres.  Figure 2a shows the percent-drift for the NI ensemble (normalised to
an excitation velocity of 1 m/s) calculated for both TL and TU, that is obtained by inverting eqns. 13 and 14 and
substituting into eqn.6.  The M+SD spectral acceleration Sa/g for this ensemble, using the same numerical scale,
is also shown in this figure.  For H = 30 m, eqns. 13 and 14 yield values for TL and TU of 0.995s and 1.43s
respectively.  As would be expected, the upper bound period TU results in the larger drift (3.2% compared with
2.5% for TL), but the difference in drifts between the two period bounds is surprising small.
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Figure 2b shows, for the same ensemble, the ratio of percent-drift to Sa/g for the two period-bounds. While not
shown in this figure, the corresponding curves for the other ensembles are very similar to those shown here, i.e.
this ratio is relatively insensitive to the frequency content of the ground motion. These curves also show that drift
is essentially a linear function of period, as is the displacement.

It should also be noted that since the numerical values of a and v, expressed in g and m/s respectively, are equal
for the NI ensemble, the curves in Figs. 2a and 2b can also be scaled by the peak ground acceleration a. Given
the above, the curves in Fig. 2b can be used to estimate upper and lower bounds of drift for any ground motion
for which the spectral acceleration is known.

SIMPLE DRIFT-BASED DESIGN

Figure 2, in combination with eqns. 13 and 14, can be used to determine the spectral acceleration which will be
required to generate the range of Dr2(0) for a reinforced concrete frame structure of a given height when subject
to a ground motion with a known spectral acceleration.   Alternatively,  eqn. 12 can be used to estimate drift
from spectral acceleration for a frame structure with known period.

Drift-based design requires that appropriate drift limits be set. Vision 2000 [SEAOC 1995] recommends the
following performance limits:  Operational (maximum drift = 0.5 %), Life Safety (maximum drift = 1.5 %) and
Near Collapse (maximum drift = 2.5 %).

After the design as been more or less completed then an elastic eigenvalue program should be used (with
appropriate stiffness reductions to take into account of cracking) to obtain a better estimate of T to ensure that it
is bounded by TL and TU.  If this is not the case, then the proportions of the designed frame are considered
exceptional and the designer should review both the design requirements and the design calculations.

NUMERICAL EXAMPLE

The task in this example is to determine the expected drifts for a 9 storey RC frame (H = 30m) in San Francisco
at two return periods, using Fig. 3 that shows the variation of median values of Sa(1.0)/g with return period for a
number of Canadian and US locations  [USGS 1999] In accordance with the previous discussion, it is assumes
that California earthquake records may be represented by the NI ensemble (i.e. a = v)

As indicated previously, TL and TU for this structure are 0.995s and 1.43s respectively, which can be
approximated as 1.0s and 1.5s.   Since uniform hazard spectra (UHS) are not available for T=1.5s, it is assumed

here that their Sa/g varies with 1/T in this period range, i.e. Sa(1.5) . 0.67 Sa (1.0).  Drifts will be checked at both
TL and TU.  

For a return period of 500 years, which corresponds approximately to the 10% in 50 years probability of
exceedance level used in most design codes,  Fig. 3 yields Sa(1.0) = 0.6g, and therefore Sa(1.5) = 0.4g.  For this
ensemble,  at an excitation of a = 1g ,  Fig. 2a shows that Sa(1.0) = 1.4g ; consequently the UHS is equivalent to
scaling the NI ensemble to a peak ground acceleration a  = 0.6/1.4 = 0.43g.   This is very close to 0.4, the value
applicable in San Francisco in previous editions of the UBC.

The curves in Fig. 2b can be approximated as follows:

[Drift for TL]/ [Sa/g] = 1.75T (for a = 1g), and

 [Drift for TU]/ [Sa/g] = 2.5T (for a = 1g)

For this example, using the 500 year spectral accelerations given previously

Drift for TL = 1.75 x 1 x 0.6 = 1.05%, and

Drift for TU = 2.5 x 1.5 x 0.4 = 1.5%.
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If the structure is designed at TU, the maximum drift will be essentially equal to the SEAOC Vision 2000 life
safe limit. Whereas these drifts represent elastic values, their post-yield counterparts will be of the same order of
magnitude.

Now consider a return period of 2500 years, which corresponds approximately to the 2% in 50 years probability
of exceedance level now being used in the Uniform Building Code [International Conference of Building
Officials 1997](with a multiplier of 2/3). This multiplier is intended to bring design forces and displacements in
the western US back to approximately the levels calculated using the 10% in 50 years values as done above.

From Fig. 3: Sa(1.0)/g = 1.0 and consequently, Sa(1.5)/g = 0.67,.  Using the same approach as above, the design
drifts would be as follows:

Drift for TL = 1.75 x 1.0 x (2/3 x 1.0) = 1.17%, and

Drift for TU = 2.5 x 1.5 x (2/3 x 0.67) = 1.68%.

These values are only slightly higher than those estimated directly from 10% in 50 years spectral values.  Given
the approximate nature of these drift estimates, the conclusions of drifts at or below life safe limits still applies.

Estimates of drifts at the 2500 return period can be made by removing the 2/3 factor used for design purposes,
resulting in values ranging from 1.75% to 2.5%.  Maximum drifts at this return period can approach the SEAOC
Vision 2000 near collapse limit.

Several observations can be made from this example.  First, the sensitivity of drift to period is somewhat larger
than that indicated in Fig. 2a.  This is the case because the ratio of Sa(1.5)/Sa(1.0)  for the NI ensemble is 0.57
rather than 0.67 for the UHS, as assumed in this example.  The assumption in this example is more conservative
and is also consistent with the normal simplified design spectra for which spectral velocity is constant in the
intermediate period region, leading to Sa varying with 1/T.

Second, as would be expected, the convolution (i.e. multiplying the 2% in 50 years hazard by 2/3 to bring forces
back to 10% in 50 years levels) adopted in UBC97 produces essentially the same estimates of maximum drift.

Third, ground motions at the 2500 year return period, can result in near collapse levels of lateral drift if the
period approaches TU.  This provides a sense that return periods for structural collapse of normally proportioned
structures will be somewhat in excess of 2500, i.e. with probabilities of exceedance below the 2% in 50 years
level.

DISCUSSION AND CONCLUSIONS

The approach presented in this paper and the example using this approach have shown that maximum drifts for
frame structures can be estimated quite easily using the concept of drift spectra.  Upper and lower bounds for the
drift of a frame structure of a given height and subject to ground motions with a specified spectral ordinates
(either the spectra for actual earthquakes or the ordinates of a uniform hazard spectrum) can be determined very
simply.  These bounds can be used by designers to determine the sensitivity of the particular structure to lateral
drift. This information can then be used in proportioning the structure to meet drift performance criteria.

For the particular example considered, which is for one of the most seismic locations in the U.S., life safe drift
performance can easily be met by normally proportioned RC frame structures; drifts are well below that limit if
structures are on the stiff end of the normal range.  RC frame structures of the considered height (30m) at
locations with lower spectral ordinates would be even less sensitive to drift considerations.   Fig. 2a shows that
structures with periods in the range 0.5 to 1.0s would have slightly larger drifts, with maximum values (i.e. for
TU = 0.5 to 0.7s) approximately 30% larger than those indicated in this example.
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(a) NL Ensemble (low a/v)

(b) NI Ensemble  (intermediate a/v)

 
        (c) NH Ensemble (high a/v)

                   Figure 1  Mean Plus One Standard Deviation (M+SD) Drift Spectra for H = 30 m
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(a)  M+SD Spectra for NI Ensemble Scaled to v = 1 m/s

(b) M+SD Response Ratios for NI Ensemble

Figure 2 Response of Reinforced Concrete Frames Using Goel & Chopra Period Formulae

Figure 3 Seismic Hazard at Period of 1.0s, Selected Canadian and US Locations
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