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SEISMIC RESPONSE EVALUATION USING IMPULSE SERIES METHOD
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SUMMARY

Based-on mathematical considerations the impulse series method expresses the seismic response
by analytical formulas, instead of integrals. It is mathematically proved that the input and output of
a linear system can be reduced to specific random pulse trains. Six earthquake records are
analysed, new parameters being calculated. Formulas for the mean and variance of the linear
response of SDOF and MDOF systems are obtained. The capacity to assess qualitatively the
deterministic and random response is an important feature of the impulse series method, a
procedure recently developed in Romania.

INTRODUCTION

The response of linear systems to ground motions is usually convenient to be determined using Duhamel
integral. Actual seismic acceleration is not an elementary function hence the seismic response can be only
expressed in the form of an integral. In order to solve this type of integrals a step-by-step technique has to be
considered. Numerical integration provides quantitative data needed to estimate seismic demands (displacement,
energy, ductibility, force) for conceptual design. However there is a great need to express the seismic demands in
terms of analytic formulas.

LINEAR DETERMINISTIC RESPONSE

The responses of SDOF and MDOF linear systems when subjected to earthquake ground motions are given by
the following differential equations:

uxxx −=++ 2
002 ωξω (1)

[ ]{ } [ ]{ } [ ]{ } [ ]{} uMxkxcxM 1−=++ (2)

where xxx ,,  are the relative displacement, velocity and acceleration of the SDOF system, u =base

acceleration, =0ω natural frequency, =ξ viscous damping factor. [ ] [ ] [ ]kcM ,,  are respectively the ( )NN ×
mass, damping and stiffness matrices. The vectors { } { } { }xxx ,, represent the displacements, velocities and

accelerations of the MDOF systems, which has N degrees of freedom. If ( ) ( ) 000 == xx  then the solution of

Eq.(1) is Duhamel integral

( ) ( ) ( ) τττ dthutx
t

−= ∫0
(3)

where the impulse response function (IRF) of system is
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( ) ( ) ( )[ ] ( )τωτξωτθ
ω

τ −−−−=− tttth a
a

sinexp
1

0 ; ( ) =−τθ t Heaviside function,

2
0 1 ξωω −=a ,  t is a fixed instant of time and τ  is the variable of integration. Dividing the interval [ ]t,0

into n subintervals [ ]ii tt ,1−  with it chosen so that ( ) 0=itu  for 1,1 −= ni , ttn = , ( )tnn αα =  and

applying the first mean value theorem one obtains:

( ) ( ) ( ) ( )i
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i
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t
thUdthutx
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i

ατττ −=−= ∑∑∫
== − 11 1

(4)

in which ( ) ττ duU
i

i

t

ti ∫
−

=
1

, ( )tUU nn = , ( )tnn =  and [ )iii tt ,1−∈α  are not unique determined.

Turning to Eq.(2) using the modal transformation ( ){ } [ ]{ }qvtx =  with [ ] =v modal matrix, { } =q vector of

normal coordinates, the total displacement corresponding to the l-th mass is represented in the form

( ) ( ) ( ) ( )( )∑∑∑ ∫∑
= ===

−=−==
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ατττ (5)

where ∑
=

=
N

s
sskk mvb

1

 and ( ) ( ) ttth akkk
ak

k ωωξ
ω

sinexp
1 −= ; =sm mass at level s, akω  and kξ  are the

damped angular frequency and damping in the k-th mode. The existence of time instants ( )k
iα  is proved by the

first mean value theorem, ( ) [ )ii
k

i tt ,1−∈α . Table 1 lists the results of the analysis of six earthquake records via

the impulse series method. The following notations are used: =+
maxU maximum positive impulse magnitude,

=−
minU minimum negative impulse magnitude, ∑ +

iU  and ∑ −
iU  are the sums of the positive and negative

impulse magnitudes, =∑ 2
iU the sum of the squares of the impulse magnitudes at the end of the earthquake.

Table 1

Earthquake record Duration
(sec)

+
maxU

(cm/sec)

−
minU

(cm/sec)
∑ +

iU
(cm/sec)

∑ −
iU

(cm/sec)
∑ 2

iU
( )22 sec/cm

Bucharest  N-S, 1977       40     101.28   -96.20   357.59  -355.63     25011

El Centro   N-S, 1940       29       56.57   -45.73   651.17 -657.83     22716

Bucharest 1986       22      12.06   -10.52   113.34 -116.35       1036

New Mexico N-S,1985       59      67.52   -74.76   894.61 -901.05      76849

Bucharest   E-W, 1977       15      49.50   -30.50   224.65 -224.55        7472

Bucharest, vert., 1977       40        5.68   -11.64   141.36  -140.69          841
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SEISMIC RESPONSE AS A GENERALIZED FUNCTION

The concept of generalized function (or distribution) permits the extension of the rules connected with
differentiation and integration formulas without usual restrictions imposed on the behaviour of ordinary
functions. In the field of distributions one may be proved (Daniliu 1996) that the continuous base acceleration

may be substituted by a series of Dirac impulses applied at the time instants iα . For a specified impulse

response function ( )τ−th  one can write in two symbolic forms:

( ) ( ) ( ) ( ) ( ) ( )∑∫
=

∞+

∞−
−=−>==<

n

i
iit thUdthuhutx

1

, ατττττ (6)

( ) ( ) ( ) ( ) ( ) ( )∑∑∫∑
==
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i
ii thUdthUhUtx
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, αττατδτατδ

and it follows ( )
( )

( )τατδ uU
tn

i
ii =−∑

=1

(7)

The Fourier transform of u  is given by ( ) ( ) ∑∫ ∑
=

−∞+

∞−
=

− =−=
n

i

j
i

n

i

j
ii

ieUdeUtU
11

, ωαωτ τατδω

where 1−=j , ( )tnn = , ( )tii αα = , ( )tUU nn =  and ( )tU ,ω  is an evolutionary function of both t and

ω . The mean square of ( )tU ,ω  is obtained as

[ ] ( ) ( )[ ] ( )
( ) ( )







≈








−+== ∑∑ ∑∑

== = =
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sisii UEUUUEtUtUEUE
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1 1 1

2*2 cos,, ααωωω  ; (8)

where si ≠ , E indicates the ensemble average and asterisk denote the complex conjugate. Here 
( )

∑
=

tn

i
iU

1

2 is an

increasing function of time and plays the role of an input energy. In Fig. 1 is illustrated ( )∑
=

−
n

k
iiU

1

ατδ  the

corresponding impulse diagram to the 1977 Bucharest earthquake NOOS record (40 seconds).
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Fig. 1 Impulse diagram of the 1977 Bucharest earthquake.
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RANDOM SEISMIC RESPONSE

Generally the responses of SDOF and MDOF systems are considered as random functions denoted by ( )tX  and

( )tX l . The subintervals [ ]ii tt ,1−  have random end-points and the differences iii tt ϕ=− −1  are considered as

random independent variables. The number of impulses iU   is equal to the number of iϕ  or the number of

random variables iα , with 1,1 −= ni . This common number n(t) is a stochastic process, which can be treated

as a stopped renewal process ( Mihoc Gh. et al. 1978 ). The impulse magnitudes iU  are considered random

variables with a deterministic envelope function called intensity function. In literature different intensity
functions were proposed (for review see Barbat and Roca 1990, Lin and Cai 1997). The intensity function
initiated by Amin and Ang has the expression:

( )

( )[ ]













>
≤≤

≤≤
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−−
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21
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2
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ttt
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t

tt

t

t

tI

γ

(9)

The intensity function proposed by Otto is given by:

( ) 





−

= 0

1

0

t

t

e
t

t
tI (10)

Returning to the Eq.(4) every pulse shape function may be approximatively evaluated as

( ) ( ) ( ) ( )i
R

i
R

iiii
i thpthpthpth τττα −++−+−≈− ...2211  where i

R
ii τττ ,...,, 21  are iR points belonging to

[ ] ( ) ( )∑
=

− =
iR

r

i
r

i
r

i
rii uuptt

1
1 ,, ττ . The values i

R
ii ppp ,...,, 21  are bounded between zero and unity and their sum

is 1
1

=∑
=

iR

r

i
rp . The values i

rp  are playing the role of probability of iα  to be equal to i
rτ , i.e.

( )i
i
r

i
r Pp ατ =≈ . If ∞→iR  then it follows:

( ) ( ) ( )( ) τττα α dfthth it

ti

i

i
∫

−

−=−
1

(11)

where ( ) ( )τα
if  may be compared with a probability density function of the random variable iα ,

( ) ( ) ττα ∆≈ ii
r fp ; ( )( ) 1

1

=∫
−

i

i

t

t

i df ττα . For the last subinterval [ ]ttn ,1−  some transformations can be done.

Denoting 1+nt   the next instant after 1−nt  where ( ) 01 =+ntu  and ( )∫ +

−

=1

1

maxn

n

t

t nUdu ττ  one may be shown that
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nnnnnnn
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thUthUtthtUdthu
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ααγατττ −=−=−=−∫
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maxmax
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m
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ττ ,
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=nR the number of time instants in the subinterval [ ]ttn ,1− , =m
nR the total number of instants in the

subinterval [ ]11, +− nn tt .

Instead of the Eq.(4) it might be written:

( ) ( ) ( ) ( )( ) ( )
( )

( ) ( ) ( ) ( )∫∑∫ −=−=
= −

ttn

i

t

t

i dthfzUdthfzUtX
i

i 0
1 1

ττττττττττ αα (12)

where ( ) iUU =τ , ( ) ( ) 11 −−= iz τ , ( ) ( )ττ αα ff i =  when nitt ii ,1,1 =≤≤− τ . For the function

( )ταf one can adopt the hypothesis that ( ) ( ) ( )τττττα nnf −∆+≈∆ . Passing to the limit it follows

( ) ( ) ( ) ( )τ
τ

ττττ
τα n

nn
f ′=

∆
−∆+=

→∆ 0
lim (13)

when ( )τn′  is the random arrival rate of the impulses. Calculating the square of  ( )tX  one obtains:

( ) ( ) ( ) ( )sis

n

i

n

s
i

n

i
ii ththUUthUtX ααα −−+−= ∑∑∑

= == 1 11

222 , si ≠ (14)

.If X(t) is a zero mean process ( ( )[ ] 0=τzE  in Eq. 12) the variance of the seismic displacement response is

calculated neglecting the cross correlation between ( )ii thU α−  and ( )ss thU α− .

( )[ ] ( )



 −≈ ∑

=

n

i
ii thUEtXE

1

222 α (15)

where the mean of the second term in the righ-hand side of Eq.(14) is considered zero. Making the same
transformations as in Eqs.(11), (12) the variance becomes:

( )[ ] ( ) ( ) ( )( )
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( ) ( ) ( ) =
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= −
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i dfthUEdfthUEtXE
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1

ττττττττ αα

( )[ ] ( ) ( )[ ] [ ] ( ) ( ) ( ) ττττττττ α dLthIUEdfEthUE
tt

−=−= ∫∫ 2

0

22
max

2

0

2 (16)

where 
22

max max iUU = , =iUmax  maximum absolute impulse magnitude, E=mean operator, ( )τI is the

intensity function, ( ) ( )[ ]ττ nEL ′= . If the average impulse arrival rate ( )τL  may be considered constant

( ) λτ =L  and denoting

( ) ( ) ( )tPdIth d

t
=−∫ τττ 2

0

2 (17)

Eq.16 takes the form

 ( )[ ] ( ) [ ]2
max

22 UEtPtXE d λ= (18)
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The value of the function dΡ  depends on the choice of the intensity function. By substitution of Eq. (9) in Eq.

(17) the maximum of 2
dΡ  is given by

[ ] ( ) ( ) =−+−
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where =0T natural period of the system. The coefficients dΡ  are computed by using Eq. (19) and are plotted in

Fig.2 for =ξ 0.02; 0.05; 0.1. If the intensity function (10) is adopted 2
dΡ  becomes:

( ) τττ
τ

dthe
t

tt

d −=Ρ






−

∫ 2
12

0 2
0

2
2 0 (20)

After the numerical integration of this integral for =0t 4 sec, =ξ 0.05, =0T 0.5 sec; 1 sec, the variation of

dΡ as a function of time is plotted in Fig.3.
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Concerning to MDOF systems similar relationships can be deduced. Starting from the Eq. (5) it may be written

( )( ) ( ) ( )( ) τττα α dfthth kt

t k
k

ik i

i

i

−=− ∫
−1

; ( )( ) ( ) ( )( ) τττα α dfthth kt

t k
k

ik i

i

i

−=− ∫
−1

22 (21)

Calculating the square of  ( )tX l  there results:

( ) ksls

N

k

N

s
lkk

N

k
lkl qqvvqvtX ∑∑∑

= ==

+=
1 1

2

1

22 ; ks ≠ (22)

In literature the contribution of the modal cross correlation is often neglected (Elishakoff 1983) then an

approximation of the variance of ( )tX l  is given by:
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( )[ ] [ ] ( ) ( ) ( )( ) =
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lkl dfthUEbvqEvtXE
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=
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22
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1

22 (23)

where ( )( )[ ] ( )ττα LfE k = . The Eqs. (16) and (23) were called Hertza formulas. Analogous to Eq. (18) the

variance is

( )[ ] [ ] ( ) ( ) [ ] ( )∑∫∑
==

Ρ=−=
N

k
dkklkk

t

k

N

k
lkl tbvUEdthIbvUEtXE

1

2222
max0

22

1

22
max

2 λτττλ (24)

where ( ) .constL == λτ  and dkΡ  correspond to kω  and kξ .

NONLINEAR ANALYSIS

Firstly a linear differential equation with variable coefficients will be considered

( ) ( ) umxtkxtcxm −=++ ; ( ) ( ) 000 == xx (25)

where damping coefficient c(t) and stiffness k(t) are functions of time. The impulse response function depends
on the time instant τ at which the Dirac impulse is applied:

( ) ( ) ( ) ( ) ( ) ( )τδτττ −=+′+′′ tthtkthtcthm ,,, (26)

Similarly to the equation with constant coefficients in this paper one proposes that for ( )τ,th  should be chosen

the expression:

( ) ( ) ( ) ( )( )[ ]τωττθτ −−= tttAt
m

th sin,
1

, (27)

where ( )τ,tA  is the variable amplitude, ( ) =−τθ t Heaviside function and ( )tω  is the variable pulsation of

the system. Since the Eq. (25) is linear the superposition principle may be applied then, by the first mean value
theorem, one obtains:

( ) ( ) ( ) ( )( ) ( ) ( )( )ii

n

i
i

t
tttAUdtttAutx αωαττωττ −=−= ∑∫

=

sin,sin,
1

0
(28)

where [ )iii tt ,1−∈α , ( ) ( ) mtkt =2ω , ( ) ( ) ( )ttmtc ωξ2= .

The initial condition for the derivative with respect to t of ( )τ,th , ( ) mh 1, =′ ττ  shows that

( ) ( )τωττ 1, =A . Physical considerations suggest that ( ) ( )( )τωττ ,, −< tAtA  where the right term in the

inequality is the amplitude of the IRF of the linear system with constant coefficients ( )τξ , ( )τω  . But the

variation of the natural period and damping of actual structures depend on the time history of displacement x(t).
Hence a more realistic equation must be analysed:

( ) ( ) umxtxkxtxcxm −=++ ,, (29)
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This equation is nonlinear and may be solved by quadratures only in the case of some particular forms of the
coefficients.

For a stable system as a qualitative approximation one may try to denote c(x,t)=C(t) and k(x,t)=K(t) and the
solution of (29) reduced to (28)

( ) ( ) ( )( ) ( )( )ii

n

i
i

t
xthUdxthutx ααττττ ,,,,

1
0 ∑∫

=

== (30)

which is an integral equation, the unknown function x(t) being included into the integral, [ )iii tt ,1−∈α . The

impulse response function depends on the whole time-history of x(t). The Eq. (30) could be valid if additional
conditions for the stability of equation are imposed. But these conditions are not yet elaborated in the general
theory of differential equations. Now the losses of stiffness and plastic displacements of real structures have to
be taken into account. The following equation of motion is proposed:

( ) ( ) umxtxkxtxcxm ee −=++ ,, (31)

where x(t) the total displacement is divided into two parts ( ) =txxe , elastic instantaneous displacement,

( ) =txx p , plastic instantaneous displacement and ( ) ( ) ( )txxtxxtx pe ,, += .

The discussion on the evaluation of nonlinear response on the basis of Eqs. (28), (29), (31) is omitted for brevity
but one can be found in Daniliu (1999).

CONCLUSIONS

Impulse series method simplifies the linear seismic analysis. For the first time the linear seismic response may be
expressed in an analytical form replacing Duhamel integral. The estimation of random response via the impulse
series method can lead to a more rational  and transparent approach. In a well-known book (Lin and Cai 1997) it
is recommended the modeling of nonstationary earthquake excitation by means of the random pulse train
models. Based-on mathematical considerations, impulse series method rigorously establishes that the input and
output of a linear system can be exactly reduced to a Dirac random impulse train and the output is equivalent to a
random pulse train with trigonometric pulse shape functions..
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