
0290

1 Technical University Berlin, Sekr. B7, Strasse des 17. Juni 135, 10623 Berlin, Germany, email: savidis@tu-berlin.de
2 Technical University Berlin, Sekr. MS4, Strasse des 17. Juni 135, 10623 Berlin, Germany email: Christopher.Bode@tu-berl
3 Technical University Berlin, Sekr. B7, Strasse des 17. Juni 135, 10623 Berlin, Germany email: Reinhold.Hirschauer@tu-ber

THREE-DIMENSIONAL STRUCTURE - SOIL - STRUCTURE INTERACTION
UNDER SEISMIC EXCITATION WITH PARTIAL UPLIFT

S A SAVIDIS1,  C BODE2 And  R HIRSCHAUER3

SUMMARY

The present paper deals with the dynamic soil-structure interaction under seismic excitation and
especially how the dynamic behaviour of structures (buildings) is influenced by the condition of
contact between the foundations and the subsoil. The so called condition of partial contact admits
only pressure contact stresses. Tensile contact stresses do not occur, so a partial or full uplift of the
foundation from the soil becomes possible. Obviously this problem of soil-structure interaction is a
nonlinear one. In this paper a numerical approach will be presented for treating problems in
conjunction with partial contact in the time domain by using the substructure method. Here the
approach is elaborated for rigid foundations but can also be extended to elastic foundations
without difficulties. The results given here show the influence of partial uplift concerning three
dimensional structure – soil – structure interaction under seismic excitation.

INTRODUCTION

Since about three decades a lot of research work has been done on the field of soil-structure interaction. A large
number of papers and textbooks concerning this topic has been published up to now. Nearly all of these works
are based on the assumption of a tension-proof connection between the foundation and the underlying soil. The
linearity associated with this kind of connection (subsequently denoted as full contact) leads to considerable
simplifications in the analysis, however its justification with regard to real situations seems sometimes to be
doubtful. This lack recently led to research works [Savidis, Bode et. al. 1999, Hornig, 1998] with the intention of
a closer-to-reality description of the actual contact conditions between the foundation and the subsoil by
assuming a one-sided connection between both (partial contact). Hereby tensile contact stresses between the
foundations and the soil are basically excluded and a partial or full uplift becomes possible, see Fig. 1. Subject of
the present work is to examine the influence of partial contact on structures subjected to a seismic excitation.

Soil Soil

Foundation

 Figure 1 Conditions of contact. Left: full contact, right: partial contact

Due to the nonlinear character of partial contact, here the interaction problem is formulated in the time domain.
Thus the approach is also basically applicable to the analysis of any other nonlinear structure.

FORMULATION OF THE PROBLEM
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Substructure method

As nowadays usual in the analysis of soil-structure interaction, the system under consideration has been divided
into two substructures: a) the finite structure and b) the unbounded soil. The basic equations describing the
dynamic behaviour of each substructure have been derived first by treating both independently. Then, the
influence of the unbounded soil on the behaviour of the structure is represented by a boundary condition linked
at those degrees of freedom associated with the nodes at the interface between the two substructures (interaction
points, Fig. 2). In the present paper this boundary condition is of the form of a displacement-force relationship
(flexibility formulation) calculated by using influence functions (Green’s functions) for a layered or
homogeneous halfspace.

Finite structure

Although the structure itself may be i. g. complex and nonlinear, in the present paper it is assumed to consist of
several rigid, rectangular surface foundations. Additional superstructures supported by these foundations are
modelled as lumped masses. Doing so, the displacements of one foundation can be condensed to six degrees-of-
freedom (DOF) according to the rigid body motions (3 translations and 3 rotations, Fig. 2a). Assembling the
rigid body DOF in the generalized displacement vector u, the externally applied loads (forces and moments) in
the generalized external force vector P and denoting the vector of the resultants of the contact stresses
(generalized interaction forces) with Q, the equation of motion for the rigid foundations can be written as:

( ) ( ) ( )ttt QPuM −=⋅ (1)

The generalized diagonal mass matrix M consists of the masses and mass moments of inertia, respectively. It is
important to note that in Eq. (1) the seismic excitation is included in the vector Q. Given the initial
displacements, rotations and their velocities, the equation of motion Eq. (1) can be solved by a time step
integration scheme. Making use of the Newmark numerical integration scheme [Bathe & Wilson, 1976], the
generalized displacements at the time ti+1 can be determined as

( ) 1i21i
pred

1i2i2ii1i ttt2/1t ++++ +=+−++= uuuuuuu ∆β∆β∆β∆
CorrectorPredictor

, (2)

with β being one of two Newmark parameters. Starting from Eq. (2), the first step is to predict the generalized
displacements based on the quantities at the time ti (Predictor step). Notice that all quantities at the time ti  are
known, either from the initial values (first time step) or from the previous time step. To perform the corrector
step it is necessary to evaluate the equation of motion at the time ti+1 to get the still unknown accelerations üi+1:

{ ( )}1i
pred

1i1i11i +++−+ −⋅= uQPMu (3)

However, this equation contains the unknown interaction forces Qi+1 resulting from the contact stresses qi+1.
Their determination requires the knowledge of the influence of the unbounded soil. That will be addressed next.

Interaction points

Contact stresses

Contact elements
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a) Considerd DOF of the rigid foundation b) Discretization of the contact area

 Figure 2 Definition of the problem
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Unbounded soil

The description of the unbounded soil starts from the so called influence functions for harmonic point loads
acting on the surface of the halfspace. They can be calculated analytically in the case of a homogeneous
halfspace [Lamb, 1904] or semi-analytically by means of the Thin-Layer-Method [Kausel, 1986] in the case of a
layered one. If influence functions for an arbitrary halfspace are available, such a halfspace can also be treated
without difficulties. Now, to obtain the resultant interaction forces Q it is necessary to solve a mixed boundary-
value problem in which zero stresses are imposed on the soil surface outside the interface, while at the interface
displacements according to the rigid body motions have to be imposed. To overcome this problem, the interface
is discretized into N elements of uniform rectangular shape [Savidis & Richter, 1979]. Within each element the
contact stresses are assumed to be constant (Fig. 2b). Since influence functions for point loads are used, quite
arbitrary shaped geometries as well as arbitrary distributed contact stresses are basically possible.

With regard to the fact, that the occurrence of contact between the foundation and the soil can only be stated at
discrete points, the displacements are represented by the corresponding quantities at the interaction points
(midpoints, Fig. 2). Introducing the relative soil displacement r = w – s, with w being the absolute soil
displacement and s the free field motion due to the seismic excitation, the relationship between the vector of the
relative soil displacements r at all interaction points and the vector of the uniform contact stresses q of all
elements, both arranged in  N x 1-vectors, can be expressed by means of a convolution integral:

( ) ( ) ( ) ( ) ( )∫ ⋅−==−
t

0

dtttt τττ qFrsw ( ) ( )∫
∞

∞−

= ωω
π

ω de
2

1
t ti*  FF (4a,b)

with F(t) being the unit impulse response (Dirac impulse). Its entry Fjk denotes the displacement (flexibility) at
the j-th interaction point due to uniform contact stresses acting on the k-th element. It can be derived from its
counterpart in the frequency domain F*(ω) (Eq. (4b)). To get F*(ω), the aforementioned influence functions for
point loads have been integrated numerically over the loaded area by a Gaussian quadrature. Since all elements
are of the same size, F*(ω) appears to be symmetric.

By evaluating Eq. (4b) by means of the Inverse Fast Fourier Transform (IFFT), the difficulties arising from the
high frequency content of F*(ω), can be avoided by using a modified unit impulse response instead of Eq. (4b).
This modified impulse and its Fourier transform is represented by a Gaussian distribution [Wolf,1988]:

( ) 


 −=
2

2

4
texp

2

1tg
σπσ

( ) ( )22* expg ωσω −= (5a,b)

Notice that if the parameter σ tends to zero, the modified impulse g(t) converges to the Dirac impulse δ(t).
Making use of Eq. (5b) yields the following definition for the modified impulse response, which is much more
suited for the application of standard IFFT algorithms due to the exponential decay of g*(ω):

( ) ( ) ( )∫
∞

∞−

= ωωω
π

ω deg
2
1t ti**

mod FF (6)

Replacing F(t-τ) by Fmod(t-τ) then leads to a similar expression to that given in Eq. (4a). For the sake of
simplicity the subscript ’mod’ will be dropped subsequently. To evaluate the expression for the soil
displacements, the convolution integral in Eq. (4a) is discretized into i+1 intervals of equal length ∆t. The time
step ∆t is chosen equal to that given in Eq. (2). The discretization in the time domain can be regarded as a
representation of the continuous contact stresses by a sequence of discrete impulses as shown in Fig. 3.
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 Figure 3 Representation of the continuous contact stresses by a sequence of modified impulses
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Rearranging Eq. (4a) and writing it in a discretized form leads to the absolute soil displacements at the time ti+1:

part SeismicpartCurrent partHistory

1i1i0i11i1i tt...t +++ +⋅+⋅++⋅= sqFqFqFw ∆∆∆ (7)

Fk stands for F(k∆t) while the superscript at q and s indicates the corresponding time. For the following
considerations it proves to be appropriate to split the expression containing all the contact stresses into one part
caused by the known contact stresses up to the time ti  (history part) and a second part caused by the unknown
contact stresses qi+1, which have to be determined. Denoting the history part of the relative soil displacements
with rhist and interpreting ∆tF0 as the actual flexibility matrix Fact, Eq. (7) can be rewritten as:

1i1iacthist1i +++ +⋅+= sqFrw (8)

Finally, it remains the task to relate the motion of the structure, given with Eq. (2), to that of the soil, given with
Eq. (8). With this relationship, the still unknown contact stresses qi+1 and their resultants Qi+1 have to be
determined depending on the condition of contact.

Condition of contact

With regard to the condition of contact formulated only at the interaction points, the (predicted) rigid body
motion Eq. (2) has to be transformed into an expression for the displacements at all interaction points.
Summarizing these quantities at the time ti+1 in the vector vi+1, the displacements at all interaction points
belonging to the foundations follow from the kinematics of rigid bodies by means of a transformation matrix T:

1i
pred

1i ++ ⋅= uTv (9)

Full Contact

In the case of full contact the compatibility between the foundations and the soil has to be guaranteed at each
interaction point (no penetrations as well as no gaps are allowed). This means that the displacements of the
foundations and the soil have to be equal at all interaction points:

hist1i1i1iact1i1i rsvqFvw −−=⋅⇒= +++++ (10)

With Eq. (10) a set of linear equations is obtained for the determination of the unknown contact stresses qi+1. If
they are determined their resultants Qi+1 follow with ∆A being the area of an element as:

1iT1i A ++ ⋅= qTQ ∆ (11)

Partial Contact

In the case of partial contact the determination of the unknown contact stresses qi+1, that means the fitting of the
impulse qi+1∆t, is based on the demand that no tensile contact stresses may occur. So first, for each interaction
point it has to be checked whether contact occurs or not since for those elements being not in contact the contact
stresses have to be set equal zero. That’s just the case if the soil displacement at any interaction point, caused by
the history of the contact stresses, is „greater“ than the displacement at the corresponding point of the
foundation. This can be stated in the form:

0qsvr 1i
j

1i
j

1i
j

hist
j =⇒−> +++ (12)

Notice that „greater“ is related to the definition of „positive“ displacements which are directed inwards the
subsoil, see Fig. 2a. For the remaining interaction points, those being in contact, again the compatibility of the
displacements has to be guaranteed, which leads to a reduced set of linear equations analogous to Eq. (10):
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1i
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1i
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1i
red

act
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1i
red rsvqFvw −−=⋅⇒= +++++ (13)
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The subscript ’red’ (= reduced) indicates, that the vectors comprise only the quantities of those interaction points
where contact occurs. Finally the time step is finished by evaluating the equation of motion Eq. (3), correcting
the displacements and then calculating the (generalized) velocities from a formula similar to that given in Eq.
(2), followed by an iteration process until an accuracy goal is achieved.

NUMERICAL RESULTS

The verification of the proposed method was given in an earlier paper [Savidis, Bode et. al. 1999] for a linear
system subjected to a direct excitation. It is based on a comparison with results obtained by well developed
methods working in the frequency domain [Savidis & Hirschauer, 1997] and making use of the inverse Fourier
transform afterwards. The results confirm the working of the method.

Influence of partial contact on a seismic excited foundation

First, to study the influence of the condition of contact, the dynamic behaviour of a rigid square foundation (side
length a = 1.0m) resting on a homogeneous soil and subjected to a seismic excitation is investigated. Two similar
types of seismic excitation are considered, consisting of a horizontal propagating plane wave with vertical
components only (sv-wave) and a sinusoidal shape of one wavelength. The first has a wavelength of λ = 50m
(long-wave excitation) with a peak acceleration of 10m/s² while the second one has a wavelength of λ = 0.5m
(short-wave excitation) with a peak acceleration of 100m/s². The phase velocity in both cases is c = 200m/s,
leading to the corresponding time histories s(t) as shown in Fig. 4.

To determine the dynamic response, the interface between the foundation and the soil is discretized into 20x20
uniform square elements. The time step is selected as ∆t = 0.2ms. The parameter σ, characterizing the sharpness
of the modified impulse, Eq. (5), is chosen as σ = 0.1ms. Notice that the accuracy can be improved, by
increasing the number of elements or by decreasing the parameter σ  of the modified impulse, however a larger
frequency range for the IFFT of the modified impulse response has to be accepted, see Eq. (6).

Square foundation (concrete):

Side length a: 1.0m
Height h: 0.3m
Density: 2500kg/m3

Soil (homogeneous):

Shear Modulus: 80MN/m²
Shear wave velocity: 200m/s
Poisson’s Ratio: 0.33

P(t)s(t)

Seismic excitation s(t):

Long-wave excitation: T = 250ms
Short-wave excitation: T = 2.5ms

a

a

h

Phase velocity: c = 200m/s

s(t)

 T

 t

 Figure 4 System under investigation and time history of the seismic excitation

In Fig. 5 the vertical and rotational DOFs of the foundation as well as the percentage of the area being in contact
are given for both types of excitation. The through lines denote the results for full contact, whereas the dashed
lines denote the results for partial contact. Regarding the vertical displacement of the foundation subjected to the
long-wave excitation (Fig. 5a) nearly no difference between full and partial contact can be seen during the
passage time (up to 0.25s). Immediately after the wave has passed, the foundation lifts up and hence it moves
under the influence of the gravity which is confirmed by the parabolic shape of the dashed line between 0.25s
and 0.33s. Afterwards the impact happens, which can be seen in the sudden increase of the contact area at about
0.33s. Note that there is also a period at the beginning (up to 0.1s) where only a few or none elements are in
contact without having a significant influence on the vertical displacement. Regarding the rotational DOF, a
superposition of a higher frequency signal due to the rotational eigenfrequency of the system can be observed.

Another interesting effect is, that for the short-wave excitation, the difference between full and partial contact is
more distinct (Fig. 5b), although the area being not in contact is much more smaller than in the first case.
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 Figure 5 Square foundation subjected to a seismic excitation: Influence of full and partial contact

Influence of adjacent structures with partial contact

The system analyzed here is shown in Fig. 6. It consists of two superstructures based on rigid plate foundations
resting on a homogeneous soil. Both foundations have a side length of a = 25m and the distance between both is
d = 5m. The superstructures are modelled by lumped masses connected by rigid massless rods. The lumped
masses m, their mass moments of inertia Θ and their heights h above the ground are summarized in Fig. 6. The
soil properties are the same as given before. Both foundations are excited by a seismic base motion according to
a horizontal propagating sv-wave (phase velocity c = 200m/s). As time input function a corrected data set of
vertical displacements based on a recorded accelerogram of the Imperial Valley earthquake (1979) is chosen.

Node
No.

m
[t]

Θ
[t m2]

h
[m]

A1 3100 6.5 105 0
A2 3400 7.0 105 12
A3 500 2.5 105 30

 Total weight: 7000t
 Center of gravity: 7.97mSt
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e 

A

 Side length a: 25m

B1 10500 12.6 105 0
B2 11400 12.6 105 10
B3 6000 3.6 105 22
B4 2100 2.4 105 35

 Total weight: 30000t
 Center of gravity: 10.65m
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 Figure 6 System under investigation and time history of the Imperial Valley earthquake
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First, before studying the influence of the adjacent structure B on the dynamic behaviour of structure A, once
more the influence of partial contact is investigated. Therefore, structure A is calculated separately for the
condition of full and partial contact. Although the excitation acts over 40s, in Fig. 7a the vertical, horizontal and
rotational DOFs of structure A are shown only for the first 10s in order to focus the differences which are limited
in that case to this period. Except for a small hump in the very beginning, the vertical displacements for both
conditions are nearly the same. However, if the horizontal and rotational DOFs are considered, the differences
become more evident, whereby the calculation based on the condition of partial contact leads to bigger values
compared with those assuming full contact. As before, these differences mainly appear during the first seconds,
where the excitation exhibits the most rapid changes.
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 Figure 7 Translational and rotational DOFs of structure A with respect to its center of gravity

Finally, as already mentioned, the influence of the interaction between structure A and B will be discussed. For
this reason, in Fig. 7b again the rigid body DOFs for structure A (without interaction, dashed lines) are compared
with those obtained by taking the interaction with structure B into account (through lines). Hereby partial contact
is assumed. The differences between both curves are clearly recognizable, even in the range after 10s which is
not displayed. Moreover, it is important to note, that here the interaction with structure B almost ever leads to
bigger values for each DOF. It is also interesting to note, that both curves run mostly parallel, except those
periods where rapid changes happen. The continuous offset is essentially caused by the static dead weight of the
heavier structure B, whereas the derivations are due to large gradients in the seismic excitation.
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CONCLUSION

A numerical procedure for the time domain analysis of the dynamic soil-structure interaction under seismic
excitation with the nonlinear condition of partial contact between the soil and the foundations is proposed.
Considering full and partial contact, respectively, there is no big difference in the numerical effort. The
investigation of a rigid square foundation resting on a homogeneous soil, subjected to a horizontal propagating
plane wave of sinusoidal shape, yields different results for the rigid body motions for full and partial contact,
respectively. The differences between full an partial contact depend among others on the shape and intensity of
the seismic excitation as well as on the geometry and the mass of the structure. Furthermore, investigating the
influence of the interaction between adjacent structures under the condition of partial contact, subjected to a
seismic base motion according to the Imperial Valley earthquake, also results in differences which are not
neglectable.

Therefore, regarding sensible buildings the condition of partial contact as well as the influence of adjacent
structures should be taken into consideration.
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