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EFFECT OF IMPACT VIBRATION ABSORBER WITH HYSTERESIS DAMPING
TO EARTHQUAKE EXCITATION

Shigeru AOKI* And Takeshl WATANABE?

SUMMARY

An analytical method is proposed for the random response of the primary mass with an impact
damper having hysteresis damping. The impact damper is one of the dynamic vibration absorbers
in which motion of auxiliary mass is limited by motion limiting stop or placed inside a container.
In actua collision phenomena, energy loss for an impact and duration of collision are not
negligible small. The energy loss and duration of collision can be considered by introducing
hysteresis loop characteristics. In this paper, considering above mentioned points, an analytical
model with hysteresis damping is introduced. The mean square response of the primary mass is
obtained from moment equations introducing equivalent linearization method. As earthquake
excitations, nonstationary filtered white noises, product of envelope function with respect to time
and stationary filtered white noise, are used. Using the proposed method, the random response of
the primary mass with the impact damper having hysteresis damping are compared with those of
the primary mass with the impact damper having no hysteresis damping. It is concluded that the
impact damper having hysteresis damping is more effective for reducing the vibration of primary
mass subjected to earthquake excitations.

INTRODUCTION

For reducing the vibrations of structures and mechanical equipment subjected to earthquake excitations, some
types of the dynamic vibration absorber are used(Kawazoe et. al. 1998, Reed et. al. 1998). An impact damper is
one of the dynamic vibration absorbers in which motion of auxiliary mass is limited by motion limiting stop or
placed inside a container. Many studies on impact damper have been carried out (Masri 1972, Masri and Ibrahim
1973, Davies 1980, Soong and Dargush 1997). The response of the system with impact characteristics which are
motion-limiting constraints or clearance is of great importance for several engineering applications (Moon 1983,
Moon and Shaw 1985). In some papers, an analytical model with energy loss for an impact represented by the
coefficient of restitution is used(Aidanpaa and Gupta 1993). It is assumed that duration of collision is negligible
small in comparison with the whole period of its vibration. However, in some conditions, duration of collision is
not negligible small. The results from the model taking the duration of collision into account coincide more
closely than those from the model neglecting it, with the results from experiment(Watanabe 1989). In other
papers, a model with bilinear restoring force-deformation relation is used where stiffness increases during
collision(Lin 1991). In this model, energy loss for an impact is not considered. Hence, before the behavior of
physical system can be examined analytically, it is necessary to establish an appropriate model for the system.
Generally speaking, the model is based on the result of experimental investigations of actual structures.

The authors proposed that the energy loss and duration of collision can be modelled by assuming hysteresis

loop characteristics in the relation between restoring force and penetration (Watanabe 1984, Aoki and Watanabe
1996).
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In this work, too, they assume that the collision phenomena can be modeled by hysteresis loop characteristics, an
analytical model with hysteresis damping is introduced and an analytical method is proposed for random
response of the primary mass with an impact damper considering energy loss and duration of collision.

Earthquake excitations are nonstationary random processes. The mean square response is obtained for response
of such systems. In this paper, mean sguare response of the primary mass is obtained from moment equations
introducing equivalent linearization method. As earthquake excitations, nonstationary filtered white noises,
product of envelope function with respect to time and stationary filtered white noise, are used. The maximum
response of the primary massis aso obtained from mean square response.

Using the proposed method, some numerical results concerning the random response of the primary mass with
an impact damper having hysteresis damping are obtained and are compared with those of the mass having no
hysteresis damping.

2. ANALYTICAL METHOD

An analytical model consists of a primary mass m,P and auxiliary mass m,Q as shown in Fig.1. This model is
usually used for analysis of impact damper. In order to consider the energy loss for an impact and duration of
collision, the relation between force of restitution and penetration is assumed to be represented by hysteresis loop

characteristics as shown in Fig.2. The equations of motion
are

miXi+ct (k1) +ky (x1-y) +cz2 (Kr%2) +k2 (x1-x2) -f{x2:,%21)=0 } (1)
meKz+cz (k2-%1) +kz (x2-x1) +f(x21,%21) =0

where m: and m: arc the mass of the primary mass and that of the damper, respectively. ¢, and cz are
the damping coefficient. ks and k: are the spring constants. X1 and X = are the absolute displacement. f
(x 21, X21)1is the force of restitution and is defined by piccewise-linear characteristics shown in Fig.2.

f(x2:,%2:1) isassumed to be given as following equation using equivalent damping coefficient ¢ « and
equivalent stiffness ke «.

flxz1, Xx21)=Cea(x2-X1) +kea (Xz-x1) (2)
As input acceleration ¥, nonstationary filtered white noise is given as the following equations.

lZ.ﬂ+2§sU)xis+(ﬂezZe=-.};g (3)
il-=I(t) (‘Z.K"‘.y‘ﬂ) }

where T« is the damping ratio of the ground model and w & is the natural circular frequency of the ground
model. 1{t) is envelope function which represents nonstationary characteristics of amplitude. In this paper,
two types of envelope functions as shown in Fig.3 (a)} and 3 (b) are used. ¥« is input acceleration of the
base rock and is given as stationary white noise,

Substituting Eq. (2) into Eq. (1), equations of motion are written as:

mi¥i+cr (ko-y) +ko (xr-y) +{cetcea) (X1-X2) +ke o (x1-x2) =0 } (1)
1Tl23('2+(CZ+Ceq) ()'(2-).(1)+keq (XE-X1)=0

Eqgs. (3) and (4) can be written as follows:
.Z'2=2C1(ﬂlil+mlZZ]-(ZCZUJZ'I'ZCEQ(Deq) (1+“[)i2-0.)eu2(1+'¥)22 1
il=-2t_,lm1:'z:-m1221+(2§zm2+2‘geqmeq)yiz+fneqzyzz-l(i) (Zth)RZ.RHDEZZg) J (5)

t . s
Ze=2LeWeZe-00g Ze-Ye

where €1 (=c.1/2/mi1k:) and L2 (=c:/2{mz:k2) are the damping ratio of the primary mass and that
of the impact damper. w1 {=v ki/m1) and w: (=+ k2/mz2) are the natural circular frequency. y (m 2
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/m:1) is the mass ratio of the damper to the primary mass. z: (=x -z) and z2: (=xz-x1) are the
relative displacement. Ce o {=cca/2{meakeq) and ®eq {=+ k.u/meq) are the equivalent damping
ratic and the equivalent natural circular frequency of the damper.

The moment equations of the second moments are given as follows ( Roberts and Spanos 1990) :

V=GV " +VG " +D ' (6)
where

0 0 1 g 0 0

0 0 0 1 0 0

-az as -a:r a:z arI(t} a=T1(1)

G= a: =-as a: -as 0 1] (7)

0 0 0 0 0 1

0 0 0 0 -as -av

where a:1=2C101, az=w1?, a3={(2:02420ca®ealy, a1=ca ¥, as=(2L:02+20cqwea)
(14y) ,a0=mc o * (14y) , 37 =281 (1), as=we’

P 2

Czl Kztz2 Kz1:z1 Kzi1z2 Kelzeg Keilzig
2 -

Kzlz2 O=z2 K212z22 Kzzzz Kzzzu Kez2Zzn

. 2 n . a - -

Kzl Kz1zz2 [« B 1 Kzizz Kz1ze Kztzue

V= . . A .2 . [N (8)

Kzlz2 Kzz:z2 Kzlzz2 Tz ez Kz2zr K:z2zg

N . 2 .

KzlLza Kzzzag Kzlzg Kzzze Oze Kzuwznr

Kzlizig Keeza Kilzg Krizzg Kzegze O

(9)

ocCoooo o

0
0
0
0
0
0

oo QOoC

coooco @
oo Qooo

where So is power spectral density of white noise, input excitation of the base rock. From Eg. {6) using
Egs. (7) - (9), the following moment equations are obtained.

3 O'zl2 .

a_"t =2Kzlzl

6th22 . .

_—"—‘at =Kz1z2+Kz1z2

d K21t .z 2 2 2 .
-——a—t'———-=0 P71 0 LT H0ea YK 2220 K20 20

+(2§2m2+zteqmeq)YKzl%2+mgzl(t)K21zq+2CBmgI(l)KleS

Jx Z2
Skttt O zlz—meqz(1+Y)Kzl12+2t_,1(n11(11i1

dt
-(2t_,20)2+2c,eq(l)eq) (1+'¥)Kz1£2
5 Kztzeg K K
— > R _ . .
at Z zZ g zlzaxm
a .
’—aK—:_!"L":Kélig-ﬂ)gszlzg-ZCgmnglig
2
Qﬁ%LE— =2Kz23:
dKiizz
"’ﬁ:Kiliz-mlszlz2+(l)eqz]"0‘222-2ﬁl(l)ll(ilzz
+(2t20)2+2tc q(l)eq)'Y!(z252+mgzl(t)Kz2zg+2§gmgl(l)l§zEig
d K2
a—tzi—zzozzzﬂmzx z1:2-Wea  (14y) 022420 1 01Ki122

-(ZZZU)Z-FZCeqLUeq) (].'F‘[)Kz??:?
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aKzzzn . .
—_—=Kz2zg+Kz 2z ¢

dt
dK:zi
—ﬁ:x;zﬁg-mgzlczz”-ztgmglczzz'e
B ogsi—
a_:" 2101k 1i140ec'YKi12220 101052 °
+(2t2(:.)2+2t;eq(ﬂeq)']’1(2l£2+mg21(t)ﬁilzs+2§gﬂ)zl(t)xilig}
dKi1ia
—a—:"—z“=-m121(z;22+0)eq21n(12£2-2§1m11(5122

+(2§2(&)2+2t_,eq(.l)eq)’yﬂ'i22+03321(t)|c;:22R+2C20)g I(t)l{iziz
+01 K150 -meq2(1+y)xilzz+2§1m10;12
-(2C2m2+zceqwcn)(1+'Y)1(2'l52

d ki .

Tx“u=-mlzxzlzg+ﬁ)eqdyﬁz2zg-2Clw1K£]zg

t

+ {2 w242 cqmea) Kz utma  T{) 0 "+ eI {t) K2 et
+Kz 1z

2 Kii .

-—a'(-'—l—g=-w12xz.£g+meu‘ymz;g-2§xmnc;1;g
+(2t2m2+2§cuwcq)“{Kz'zEg'HDng(t)Kzgig+2tg(l)gl(t)07‘.ﬂ2
'(DgzK'zlzg-zt;KmeK'zlig

dgs:t
e =2 {w1 Pk z2wea  (I4y)Kozi 2420 01K 1 82

o (w420 camea) {14y} @i’}
%z—uEwnzxzug cwea (1Y) K:2:0420 0 1KE 1 2
(2202420 camea) (1#y)Kiz: 04Kz 27

a—ag%iﬂmzlczn;g Wea (l4y)Kz2:e420 1@ 1K: 155

. (2w 42Ccamea) (l4y) Kzt a-we'Ki2re-2LeweKizte
a—;{—"—z-ﬂxng
FKeaie . 2 2 2 .
=3¢ = Oic -Ws Oz LK xsa

. 2
aaL:E'_ =2(-(J.)g2Kzg;z-zcgmgﬁlgz)'l'zﬂsﬂ

(10)

3. EQUIVALENT LINEARIZATION METHOD
In this paper, the equivalent damping ratio { ..« and the equivalent natural circular frequency ® -. are

approximately obtained by stationary random vibration theory since the effect of impact damper is great at the
main shock. '

When the system is subjected to harmonic excitation, dissipated energy during one cycle is
En'=2 3 k2 (Zzeo) (Z2s-eo) (11)

where Z» is the amplitude of response. And

Zrzazeo+ (1-K(/Kz) (Zz-e0) (12)
Then,
En'=K: (1-K:1/Kz2) (Z2-e0)? (13)

It is assumed that the response is narrow band random process and the probability distribution function of Z
is given by the Rayleigh distribution as follows:
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Z:z Z:t
(Z)= (- ) (14)
p Gzzzexp 20222

where 0. 2 ° is variance of relative displacement of z : , The expected value of En' is obtained as:

o0
Ex= J-O En'p(Z:)dZ:

co Z 7 2
=J Ki(1-K1/K2) (Zz-e0) Zzexp(- - 2)de
0 Oz2 2022

=K (1-K:1/K:) [20: 2 %exp (-yo?) (yo®+1)

2{2c:z2e0 {yrexp{-yo?) +/merfc(yo) 2} +eoexp (-yo ?} ] (15)

where

en

SRS (16)
erfc (yo) =1- %j%oexp(-yu)dy

When the system is subjected to harmonic excitation, dissipated energy by the damper with the cguivalent
damping coefficient is given as:

Er'=nceawazZz’ a7}

When the probability distribution function of Z» is represented by the Rayleigh distribution, the expected
value of E v’ is obtained as:

E+=20:: nw:Ceq (18)
Since Ex isequalto Et, cc. is given as:

Ex

— (19)
20 W2

Ceg=

Equivalent stiffness k.« is approximated as shown in Fig4. When the system is subjected to harmonic
excitation, equivalent stiffness k - o' is given as:

keq,={{k260+(k2+K1)(Zz-eu)}/22 tZ21Zeo (20)

ke : Z:=% e

The expected value of ke o' is obtained as:

o0
kenzfo kKea'p(Z:)dZ:

feuk Z 2 ( Z2* )iz
— c -
T *P 20.2° :

oo 4 7z 2
+J’ {kzeo+ (k24K1) (Zz-e0)} zzexp(- —ZE)dZZ
€o TJ:zz2 20::

=k2+K1exp (-yo *) -K . {myoerfc (yo) (21)

And,

2{ 20 2e0 {yoexp (-yo*) +{merfc (yo) 2} +eo Pexp (-yo ?) ] (22)

eawea=mz "Ki/kz (1-K1/Kz) [2022%exp (-yo ) (yo®+1) }
Wea’z=wz +02  {Ki/kzexp (-yo®)-Ki/kz{myoerfc(yo)
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4. NUMERICAL EXAMPLES

The maximum value of mean square response of excitation acceleration o - « is given as:

0ree | ZR2UHET) g, (23)

The mean square response of primary mass o1 ° and that of damper o :° are obtained by Eq. (10)
using Egs. (21) and (22). The maximum values of relative displacement of primary mass Zima . and
Z2max normalized by the maximum value of excitation acceleration are defined as follows { Tajimi 1960) :

Zimax=0z 10z« (24)
Zo2max=0z2/0: « )

Gap size eo is delermined by using the maximum value of relative displacement of the linear damper
without collision Zz2 1 ma « as follows:

eo=0*Zz imax (25)

Fig.5 shows the mean square response of the primary mass o - 1 ¥ for y =0.1, T1 =001, T =1.0s, T 2=0.01,
T:2=1.0s, Le=0.4 and T¢=1.0s. And, T =2n/w:, Tz =2n/w 2, Te=2n/ (ff-?‘,?mg) . The impact damper
gives the same effect of reduction of the maximum response as elastic damper. o« . ® of the mass with
impact damper decreases carlier than that with elastic damper.

Table 1 and Table 2 show z:max and Zz:max for some values of mass ratio y and nonlinear parameters
Ki/kz and K2/k:. From these tables, the }naximum displacement of the primary mass is reduced when the
impact damper is used. The effect of reduction is almost same as elastic damper. Comparing with the
maximum response of the elastic damper, the maximum respense of the impact damper having hysteresis
damping is significantly reduced. The impact damper gives the same effect of reduction of the maximum
response as elastic damper without the large response of the impact damper itself.

5. CONCLUSIONS

Considering energy loss and duration of collision, an analytical method is proposed for the random response
of the primary mass with the impact damper having hysteresis damping. The mean square response and the
maximum response of the primary mass are obtained from moment equations introducing cquivalent
linearization method. Using the preposed method, the random response of the primary mass with the impact
damper having hysteresis damping are compared with those of the mass with the impact damper having no
hysteresis damping. It is concluded that the impact damper having hyseresis damping is more effective for
reducing the vibration of primary mass subjected to earthquake excitations.
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Table 1: The maximum value of relative displacement of primary mass and damper (s*)
(s =0.01, T1=1.0s, {z =0.0L, T 2 =105, £ « =0.4, T c =105, Type I)

¥ Ki/k:z F Kz/kz J* Zlmax ZZmanx
no dampper 0.120

¢lastic damper 0.091 0.272

0.9 0.096 0.175

0.8 0.097 (.164

3 10 0.7 0.098 0.152

0.6 0.100 0,138

0.19 0.5 0.103 0.125
0.9 0.100 0.142

0.8 0.102 0.131

10 30 0.7 0.104 0.119

0.6 0,107 0.107

0.5 0.109 0.094

elastic damper 0.100 0.167

T 0.9 0.104 0.111

0.8 0.105 0,105

3 10 0.7 0.106 0.098

0.6 0,108 0.091

0.25 0.5 0.110 0.083
0.9 0.108 0,091

0.8 0,110 [L.OBS

10 30 0,7 0,112 0.078

0.6 0,114 0.070

0.5 0.117 (.062

Table 2: The maximum value of relative displacement of primary mass and damper (5°)
(£1=0.01, T1=10s, &z =0.01, T3 =105, Lz =0.4, T 2 =1.0s, Type IT)

Y K1/k2 I KE/I(Z d* Z1lmnax Z2Zmax
no damper 0.147

elastic damper 0.113 0.328

0.9 0.114 0.214

0.8 0.116 0.193

3 10 0.7 0.118 0.180

0.6 0.120 0.162

0.10 0.5 0.123 0.14%

0.9 0.120 0.169

0.8 0.122 0.156

10 30 0.7 0.125 0.143

0.6 0.128 0.128

0.5 0.131 0.114

¢lastic damper 0.126 0.207

0.9 0.126 0.136

0.8 0.127 0.128

3 10 0.7 0.128 0.120

0.6 0.130 0.111

0.25 0.3 0.132 0.101

0.9 0.130 0.112

0.8 0.132 0.104

10 30 0.7 0.134 0.095

0.6 0.137 0.086

0.5 0.140 0.076
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