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ADAPTIVE RESPONSE CONTROL AND ASSOCIATE SYSTEM MONITORING ON
INTERACTIVE SOIL-STRUCTURE CONSTRUCTIONS DURING SEISMIC
EXITATIONS

K ensuke BABA®, Naoto YABUSHITA?, Nobuhiro KéSUM OTO? Ryo HASEGAWA®* And Yutaka
INOUE

SUMMARY

The model reference adaptive manipulation is applied to the response control systems as well as to the
monitoring ones of system compositions, through the Lyapunov procedure of asymptotic stability.
The manipulated plants are set on the soil-structure interacting constructions under earthquake exci-
tations, which arc accompanied with the time delay behavior because of the seismic waves radiating
for a far ground. According to the numerical analysis, the control systems are well worked inside the
interactive situations, while the monitoring ones are likely done for the exciting specira rich enough.

INTRODUCTION

It is a hard task to mitigate the seismic responses of structural constructions built on a soil ground, because of the
unpredictable excitations and the complicate soil-structure interactions.

The present study is concerned with establishing the active control systems to reduce the response processes for
violent earthquakes, and in addition, ensuring their associate monitoring systems to identify the dynamic character-
istics of the interactive compositions. The practical manipulation is required to contain the time variable gains
extracted from the feedforward circulations as well as the feedback ones, in consideration of the temporary inputs
and the transient outputs, It is moreover necessary for the active working to be settled in the dynamic stability
approved over the total systems including the subject plants and the control means,

AcoordmgtntheLyapunm theorem of asymiptotic stability, the model reference adaptive algorithm is applicable to
such manipulation problems as bring the interactive phenornena in company with the time delay manner. The virtual
responses of the reference models are straightly corresponding to the objective states targetted by the actual
responses of the supervised plants. The reduction of the state differences is merely achieved after the adaptive
arrangement between the reference models and the subject plants, The elimination of the system tolerances is not
always accomplished, which is unnecessary for the control systems giving concentrative attention to the response
processes, but essential for the monitoring ones observing the transit processes of the composite formation, It is
available to diminish the system tolerances simultaneously with the state differences, when the spectral properties
are sufficiently plentiful in the exciting contents.
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2. SOIL-STRUCTURE INTERACTION SYSTEMS

The response processes are represented for the upper-structures with base foundations in the following equations
of motion, which are evaluated separately from those of the surrounding soil ground,

mf;,oLmx""(t)=g(t)+Ww(t)+Uu(t) (2-1)

The motion vector x ( t ) is measured relative to the seismic distarbances w ( t ) . The manipulation forces u (t) ate
worked throngh the feedback and feedforward circulations. In addition, the successive forces ¢ () are developed
on the base foundations as the reaction efforts against the separated ground motions. The interactive forces are
remarked by the convolution integrals on the foundation-ground interface, inclusive of the motion vector and the
impedance matrix G ( t ) in the time domain,

g(t)=-G(t)» x(t) 22
The impedance matrix is usnally obtained as the frequency fanction on the complex plane and ofien provided in the
numerical manner, To simulate the numeral data on the analytical construction, the following series expansion is
prepared with the real coefficients G, on the base of the physical causality.

é(m)n_go‘)incm_(im)“exp(-imt,,) ,
' cty=nn/o

c=X% 6.5 -1, R

in which the samipling delay times t , are determined by the cutoff frequency « to avoid the distorted phenomena of

aliasing. The frequency function is transformed into the chain of pulses along the time axis, which is expressed by

the Dirac’s delta functions and their modified ones with the differenctial and behindhand operations. The delaying

manner inside the impedances is physically related to the wave radiation for the far infinity of the soil ground. The

equations of motion are rearranged with the state descriptions tohavethead\?amage over formmiating the manipu-

lative role,

P ()=Apz, (O+H () +Dpw()+Bu(t) 2-3)

The elements of the controlled plants are explained into the detail of the state vector z;, (t) , the system matrix A .,

the distarbing one D, the driving one Band the successive vector f, ( t) containing the delay times as follows,

x D (t) -A7'A, -A'A,

* P

zp(t)=[

x(t) I 0 :

A;'W AJ'U
D=, » BOOSE Ty :m=0,1,2
Au=Lo+Goo » £,(0=-32 & Foai(-0,) M=2

in which the upper bound M=2 among the series expansion is associate with the number of differential times inside
the equations of motion.
3. REFERENCE MODELS

To confirm the ideal states preferred by the controlled plants, the reference models are scttled asympiotically stable
in the next state equation,

2 ()=Ayz,(1)+D ,Ew(t) (3-1)
which are disturbed by the same excitations w ( t ) as the ones attacking on the subject plants, The exciting ampli-
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tudes are modified to insert the constant matrix E between the input arrangements. The system matrix A ,, is made of °
the damping one R, to be symmetric and positive definite as well as done of the stiffness one R, and the inertia one
R, to keep the asymptotic stability inside the reference models.

AM=

-R{lRl —k;lnn
I 0 !

R,=R;>0 , R,=R]>0 , R,=R;}>0

The dynamic characteristics of asymptotic stability are also widespread over the whole of the manipulation sysiems,
while the symnetric and positive definite matrix P is requested extractive from the next Lyapunov equation,
AIP+PA _=-Q :Q=Q7>0 G2
which stands on the reference matrix A , of asymptotic stability and the inhomogeneous term  of symmetry and
positive definiteness. The pnique matrix P is generally given in the numerical manner, however, it is possible to
obminthcsolpﬁonintlwanalytimlstylewlwnthcrcfm'cncesystemshmthepmporﬁomldnmping,inwhich‘lhc
closed form of the matrix P is useful for making the efficient rule on the adaptive operations. The damping matrix
R, is, accordingly, composed of the following scries cxpansion with the stiffness R, and the inertia R, in the refer-
ence systems having N degrees of freedom,

R.zn.,:z:‘.lo s, (R;'R,;) : NzLx1 (3-3)
The scalar expansion coefficients a, are determined by the next simultanecus equation, in company with the natural
frequencies o, of the undamped sysiems and the associate modal properties of the equivalent damping ratios b,

t ol-mg _=2h, :Lam,nx1

With the enforcing term Q composed of only the stiffness matrices R ; along its diagonal, the analytical solution P is
obtained in the following compact form,

©wR,
9, R,

Pll PII

P=
PII Pu

Q=2

+ 99>0, q,>0 (34

Lt
Pyu=(qR+qR;) T {:(RE‘Rn)H )

Pr.;”qtRz '
-1 S E N aa,, 0o nem-k+1
P,=P,R, Ro"“lakagnnz_“;n a, (R R,)

The diagonal element P, is shown a little difficult with three times of summation, which is dropped out of the
controlling algorithm, whereas necessary for the monitoring one.

4, ADAPTIVE CONTROL ALGORITHM
The plant systems are excited not only by the natural disturbances w ( t ) but also by the artificial foroes u (1)
generated around the feedback and feedforward loops,
u(t)=K(t)n(t) #-1)
inwhichtlnoomponcmsnfthetimzvariablegainx(t)mamdmwﬁhmoseofﬂnemnddﬂntevmrn(t).
namely, the response state z,, ( 1), its modified state behindhand or differential and moreover the exciting distur-
. bances w (1), where any component is thrown out of the state vector.
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K()=[Kg(t) Ky(t) Ky(t) - Ku(t) Ky(t) Ky(1)],
nTO=(23() 2P 2 F-1) - 2 PT(-) 2i-) w (0]
The manipulation forces are worked to reduce the state differences e (t) between the reference systems and the
plant ones, so that the state discrepancies correspond to the next tolerance equation,
eD(t)=A e (t)+D(tIn(L), @-2)
e{t)=2z y(t)-2z,(t)
The system difference matrix @ ( t}is left to inclnde the variable gains, which is divided into the part @, (t)in
relation with the integral operation to keep the system stability and the other &, ( ¢ ) with the proportional working
to improve the system adaptability.
()=, (1)+D,(1)

={A,~A,~BKy(t)- - F_-BK_() - -D,E-D,-BK,(1)]
Both the parts of the system difference are associate with the variable matrix ¥ ( t ) conformed to the non-linear
structures of the state tolerances and the extended states,
@, ()y=¥()r, :I,;=ri>o
O, ()=¥(1)I, : I'y=T, 20, (4-3)
Y(t)=—Pe(t)nT(t) : P=P">0
The symmetric supplement matrix I, is positive definite, another supplement T, is relaxed positive scmidefinite and
the other supplement P is picked out of the Lyapunov equation (3-2) mentioned ahead. The scalar candidate V{ t)
is prepared for the Lyapunov finction in the quadratic form of the state differences and the system tolerances, which
is designed to secure the whole of the adaptive systems against the unstable situation,
Vity=e ()Pe(t)+tr[@ ()T, ®T(1)] {44
VO =-eT (1) Qe(t)-2tr ¥ ()T, ¥ "(1)]
. The time derivative of the candidate is stated in the ncgative valuc of the quadratic form, under the conditions of
constructing the system tolerances in Eq.(4-3) and at once holding the existence of the Lyspunov equation (3-2). In
other words, the candidate is led to the objective function, The adaptive rule is established to clarify the gain matrix
K (1) with the derivative of the system tolerances bringing the variable matrix ¥ (1),
o ()=-BK"(1)=¥ (), + ¥ ()T, @4-3)
in which the integral working supplemented by the matrix I, is satisfied with the minimum requircment of the
asymptotic stability and the proportional one by the matrix I', is reserved for improving the manipmlative operations,

5. ADAPTIVE MONITORING ALGORITHM
It is sometimes happened that the system monitoring examination is necessary to identify the subject plants, for
instance, when the physical properties are uncertain or forced halfway into the change of the sysiem characteristics.
It is situated here the coefficient matrices A ,and D, are unknowa in the next state equation of the interactive
constructions, and indeed the expanded factors are done in the successive term f, (t),
z0()=A 2z, (1)+f (1) +D,w(t) -1
The monitoring systems are, on the other side, set to have the known coefficients A ,, asymptotically stable and to
go through the manipulation forces u,( t ) associate with the variable gain matrix K, ( t )and the extended state
vector n ( t) in the on-line manner,
z2,7(0)=A  z ,(t)+u (1) , : (3-2)
uu{t)=Ky(t)n(t) ,
<K'M(t)=[Kn(‘)‘Au K, (t) Kw(l)"'Km(t) Kw(t) Kr(‘)]
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The adaptive monitoring cfforts are related to the adaptive control operations by exchanging the function of the -
subject plants for the one of the reference models. When the state differences e ( t ) are taken same as done in the
control systems, the tolerance equation and the system discrepancics @,, (1) are given similar to those in the
e (t)=A e(t)+® ((In(t) .

QL (D)=[Kg(t)-A,; - K (t)-F_ - - K(1)-D,]

The adaptive rule is also described with the derivative of the gain matrix K,, ( 1) in the next equation, which is
identical 10 Eq.(4-5) but merely reverse to the previous sign after exchanging the plant function and the reference
onc,

K, "()=%(t)I ,+¥(0)r, : >0, T20 (5-3}
By the way, it is saved for the present monitoring algorithm that the state differences are asymptotically reduced,
therefore the total systems run for standstill portions and the system tolerances ¢ |, ( t ) do not always come to the
O, (tIn(t)>0 D e(t)>0

For the system differences to disappear and for the gain matrices to approach toward the plant coefficients, the
spectral characteristics must be sufficiently ri¢h in the excitations w ( t ). In accordance, it is said that the exciting
conditions are more strictly applied to the monitoring arrangement than to the control one.

6. NUMERICAL STUDIES

The numerical investigation is carried out in the fundamental

soil-structure interaction systems, to research the facilities of : Xi mlll -

the adaptive management for the active control or the system I 3g '

monitoring, as shown in Fig.1. The interactive constructions i - k H
. are forced to move laterally and rotationally under the horizon- : _ TR

tal acceleration o, ( t ) of seismic excitations. The upper struc- ORIt -

tures of the height H have the concentrated mass m, , the shear- RN

ing stiffness k and the inner damping coefficient c. The base

foundations are thin and square of the length 2b, the mass moand ~ Fig. 1 Soil - structures interaction systems
the inertia radius r, around the lateral axis. The clastic soil ground is tightly contact with the foundations and spread
over a half space, which is remarked by the Poisson's ratio v=0.25, the mass density p and the shearing modulus p or
the shearing velocity v, . The impedance function contains the horizental component expanded with the cocfficicats
k%, on the soil-foundation interface, as well as the rotational component with the cocfficients k%, . It is available to
adopt the upper bound N=1 in the sampling expansions, when the so0il ground is disposed homogeneous and
extended boundless. The reference models are characterized asyrptotically stable with the proportional damping
and clearly distinctive with the fondamental frequency e, and its associate damping ratio £, . The lateral responses
X, (t) and the rotational one ¢ ( t ) are given on the upper structures (n=1) dnd on the base foundations (n=0),
parallel to the lateral manipulations u, ( t } and the rotating one y, (t ). The physical parameters and the physical
components are arranged in the following dimensionless form with the head script (— ),

%a(1)=x.(1)/xe , $(=6()H/x, .

T (t)=u, (t)/(0mgxg) , Tg(t)=uy,(1)/(2bw PFmgx,) ,

Km=0 g"kmn/(1b) , Kpp=30 "kp/(ub’) ,

T=t!ﬂﬁ s lﬁl_‘—‘mLImG'?. ' wu=mufmg »
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R=H/b=1, T,=r/b=1/4T , L=c/(2ym k) ,
W,=m,/ms=04 , ym,/k fog=1, y_p/y,5=05,

ma=vy/b , mg=8pb’ |, af(t)pa=0 ' %g ,

Tull
= , E=¢el :m=0,1,2 , n=0,1

TmFI

The interactive compositions may be strictly uncertain, because of the complicate soil matetials and moreover the
changeable surrounding settlement arownd the soil-foundation interface. Therefore, the delay arrangement is inten-
tionally dropped out of the gain components K _ ( t ), 1o examine both the controlling facilities and the monitoring
ones in the present analysis. Fig.2 covers the response processes under the artificial manipulations as well ag the
lateral NS components of the 1940 El Centro Earthquake. The controlled response records are stood on a good level
mmmpanmmﬁﬁemmuﬂhdmwhchmmvedﬁom@mmﬂaﬂemofmsmgdwbehndbmﬂgmm
owmgmthembusturgnnizaﬁon

As shown in Fig.3 and on Table 1, the monitoring records are also nearly favoreble for the preliminary contents. The
rotating terms are, however, left out of the presets in spite that the main part of the carthquake is repeatedly excited.
The peculiar appearances of the rotations are related to the physical surroundings that the delay components are
superior among the rotating motions in case of the impedance function defined on the square base foundations.

7. CONCLUDING REMARKS

The following remarks are brought out of the present study:

(A) It is principally available that the soil-structure interaction systems are definitely formulated in the time domain,
when the frequency impedance function is simulated on the series expansion after the causal conditions and
transformed into the analytical form,

. (B) The model refemmeadapﬁvemmﬁpulaﬁonsnre applicable not only to the on-line control systems but to the
system monitoring ones, even though set up on the interactive constructions,

(C) The manipulative facilities are graded up when the Lyapunov matrix equation is nnalyumllysohwdthroughthe
reference models having the proportional damping characteristics. .

(D) The adaptive control formations are robust in want of the successive gains for the dme bebind responses. On the
other hand, the monitoring formations are not always complete by taking the asscciate gains free of the delaying
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Table 1 System compositions of interactive plants after monitoring operation, in reference to the presets,

‘ -A,-A, -b
1,3=].0,7m=0.1,qu=q,=10000,a=0.5,C=0_03,AP" 1 o |-Br7la
A, A, b
1.6000 -1.0000 —l.OOOOW 0.0600 -0.0600 -0.0600 l.()(}()()l
preset -0.8966 2.0370 0.89%66 —0.0538 0.6704 00538 0.8966
~2.9997 29997 55367 —0.1800 0.1800 43182 LO'DOOO
monitoring at T = 30,000
1 r \
0.9911 -0.9911 -0.9911 0.0632 -0.0632 -0.0632 1.0000
Model (A) -0.6148 14787 06148 -0,1342 0.6856 0.1342 0.8135
{-0.1579 0.1579 07822 {—0.1326 0.2326 0.6716 0.1094
0.9961 -0.9961 -0.9961 0.0539 -0.0539 -0.0539 1.0000
Model (B) -0.8997 20369 0.3997 -0.0550 0.6746 0.0550 0.8983
-1.0852 1.0852 3.3004 {—0.3&10 0.3810 1.2239 {0.0075
0.9963 —0.9%63 —0.9963 0.0595 -0.05%5 -0.0595 ].Dﬂﬂﬂw
Model (C) —0.8990 2.0451 0.89%0 —0.0523 0.6722 0.0523 0.8948
l—1.0893 1.0893 33312 -03762 0.3762 12163 0.0073
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Fig. 3 Displacement diﬁ'ermée processes relative to plant responses

Reference Model (A) : shearing type having triangle constraint of the first mode, uniform distribution of
masses, @, =0.6117and § ,, =0.09.
Reference Model (B): rocking type having damping properties proportional to stiffnesses, &, = 0.6036

and ¢, =0.09.

Reference Model (C) : rocking type having Rayleigh damping properties, &, =0.6036 , @ o= 1.2374,
£ ,n=0.0972end { ,,=0.1757.
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