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SUMMARY

A general framework is presented for optimal design based on multiple design criteria which is
suitable for performance-based design of structural systems operating in an uncertain dynamic
environment. Reliability-based design criteria are used to maintain user-specified levels of
structural safety by properly taking into account the uncertainties in the seismic loads that a
structure may experience during its lifetime, as well as modeling uncertainties. Code-based
requirements are easily incorporated into the optimal design. The methodology is demonstrated
with a simple example involving the design of a three-story steel-frame building for which the
ground motion uncertainty is characterized by a probabilistic response spectrum developed from a
standard seismic hazard analysis.

INTRODUCTION

The decision-making process in the design of civil engineering systems requires the selection of the most
promising choice for the design from a large set of possible alternatives, based on an evaluation using specified
criteria reflecting the acceptability of a design. Such criteria usually include costs, structural engineering criteria,
client preferences, social, political, legal and economic considerations, and liabilities from uncertain risks
arising, for example, from construction practice and environmental loads such as earthquakes and strong winds.
Many of these design criteria are conflicting. The development of a computer-aided optimal design decision
process should allow the designer to trade off these criteria in a controlled manner during the design
optimization. A software package CODA has been developed to assist the design decision process by using
methodologies such as object-oriented programming, multi-criteria decision theory, stochastic optimization
(including genetic algorithms) and reliability integral approximations [Beck et al., 1996].

In order to be able to trade off lifetime reliability of performance and construction cost for a design, the
uncertainties in the structural response due to the uncertainties in the loads exciting the structure must be
considered. These uncertainties, particularly for seismic loads, can be very influential factors in the design
decisions. In addition, the uncertainties arising from modeling assumptions and simplifications may significantly
influence the calculation of the seismic risk. A methodology that incorporates both load and modeling
uncertainties in the optimal design and analysis framework is presented here and is illustrated with an application
to a simple frame structure. For demonstration purposes, the four performance levels suggested in SEAOC's
Vision 2000 [SEAOC, 1995] are used.

OPTIMAL DESIGN METHODOLOGY

The design decision-making process is an iterative procedure where a preliminary design is cycled through
stages of analysis, evaluation and revision to achieve a design which is optimum in some chosen sense. In the
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proposed methodology, a formal treatment of these three design stages is made so that the decision-making
process can be implemented in software to aid the designer in selecting an optimal design. The methodology
handles the key aspects of decision making in a design process in a consistent and rational way. Also,
uncertainties related with the structural design are incorporated into the design process in a quantitative and
explicit manner.

An important ingredient in the proposed optimal design methodology is the introduction of preference functions
µi iq( )  to implement the design criteria in a ‘soft’ form during the evaluation process, where qi  is a performance

parameter such as construction cost, peak lifetime interstory drift ratio or lifetime earthquake losses. For the i -th
design criterion, the preference of a particular design θ  is evaluated through a measure µ θi iq( ( ))  of the

performance parameter qi ( )θ , where values of µi  range from 0  to 1. A larger value of µi  implies that the

designer prefers the corresponding design more, as judged by the i -th design criterion. A preference function
can also be viewed as giving a measure of the degree of satisfaction of each design criterion based on the
calculated performance parameter values for a given design. For example, the extreme values µ θi iq( ( )) = 0  or

µ θi iq( ( )) = 1  imply that the current design given by θ  is totally unacceptable or perfectly satisfactory,

respectively. As an illustration, a preference function for the interstory drift ratio risk is given in Figure 1(d)
where it is implied that an interstory drift ratio risk lower than Fl  is perfectly acceptable while interstory drift

ratio risk higher than Fu  is completely unacceptable. Intermediate values express the degree to which the user

feels the design gives ‘acceptable performance’.

The overall evaluation measure  of the design specified by µ θ( )  is built up from the individual measures

µ θi iq( ( )) , i Nc= 1, . . . , , of the Nc  design criteria through a preference aggregation rule which must satisfy

certain axioms of consistency [Beck et al., 1999]. A preference aggregation rule is simply a functional
relationship between the overall design evaluation measure µ  and the individual preference values µi  for all of

the design criteria. Some of the preference functions µi  may correspond to design parameter constraints in a

‘soft’ form and, therefore, these µi s will depend directly on the design parameter values. Soft forms of the

design criteria using preference functions allow the design criteria to be traded off against each other when
determining the optimal design. This is a very important aspect for properly obtaining multi-criteria optimal
design where conflicting criteria exist.

The selected preference aggregation rule is the multiplicative trade-off strategy given by:

µ θ µ θ µ θ µ θ( ) [ ( )] [ ( )] [ ( )]= 1 2
1 2m m

N
m

c

Nc (1)

where m w wi i jj

Nc=
=∑/

1
, i Nc= 1, . . . , , and wi  is a positive importance weight assigned to the i -th design

criterion which can be used to control the trade-off process. The user can give more influence to some design
criteria than others by assigning larger values to their importance weights. The choice of the values for these
weights is subjective, but the user can gain experience in their selection in any design problem by investigating
the influence that different values for the weights have on the final optimal design and on the corresponding
preference values for each design criterion. The importance weights wi  can be also viewed from another

perspective: since there is no natural scale for preferences over all the diverse criteria, there is a need to be able
to independently control their influence during the trade-off which occurs in the optimization process. If the wi ’s

are all equal, the trade-off is governed by the inherent sensitivity of each µi  with respect to θ .

To address the lifetime economic effects of seismic risk, economic factors such as the construction cost and the
‘lifetime risk’ of the structure may be included in the preference functions. For example, the lifetime risk may be
quantified through the peak interstory drift since this is highly correlated with the costs of structural and
nonstructural repair after an earthquake. It may also be addressed directly by the expected lifetime earthquake
losses [Ang et al., 1996], which can be better communicated to the building owner.

To obtain the optimal design for given importance weights, the preference µ θ( )  is maximized numerically with

respect to θ . For design parameters defined on a continuous space, the adaptive random search method has been

used in our work [Masri, 1980]. It should be noted, however, that many design parameters are defined on a
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discrete space. For example, steel I-beam sections are available commercially in only a discrete set of sizes. For
this case, a genetic algorithm may be used for the optimization of µ θ( )  [Chan, 1997].

TREATMENT OF UNCERTAINTIES

The structural response quantities of interest will be uncertain because of modeling errors and the unknown loads
that the completed structure will experience over its lifetime. The performance of the structure is usually judged
in this case by the lifetime system reliability, or equivalently, the failure probability, that is, the probability of
unacceptable performance over the lifetime of the structure.

The first step in developing an expression for the failure probability given an earthquake event, designated by
P F( | )θ  for a design corresponding to θ , is to characterize the seismic hazard at the construction site by a set of

ground motion parameters α  (for example, peak ground acceleration, response spectrum ordinates, duration of

motion, frequency content, etc.). For most probabilistic hazard models in use, these parameters depend, through
appropriate ‘attenuation’ relationships, on a set of uncertain ‘seismicity’ variables, designated by a vector φ ,

accounting for the uncertain regional seismic environment. For example, φ  may include variables such as

earthquake magnitude, fault dimensions, source parameters, epicentral distance, propagation path properties and
local site conditions. The uncertain values of φ  are described by a probability density function p( )φ . For

example, p( )φ  might be chosen to model the probability of occurrence of an earthquake of a given magnitude

and the probability of fault rupture at a specific location on a fault.

The required attenuation relationships are often derived by an empirical fit to the observed data. There is
uncertainty associated with these attenuation models, even when φ  is known, which is reflected by the scatter of

the analyzed data about the mean or median model predictions. Therefore, the attenuation relationship should
give a probabilistic description p( | )α φ  of the ground motion parameters α  given the seismicity parameters φ .

Knowing the ground motion parameters α  for a site does not completely specify the structural excitation.

Furthermore, the structural model parameters ψ  corresponding to a particular design θ  are not known

accurately. To establish P F( | )θ  from the different sources of uncertainties, P F( | , , )θ ψ α , the conditional

probability of failure for the given design θ , structural model ψ  and ground motion parameters α , may first be

set up. This can be obtained by a fragility analysis. The uncertainties in the seismic environment and ground
motion modeling are then combined using the total probability theorem to determine the failure probability given
that an earthquake has occurred and given a structural model:

P F P F p p d d( | , ) ( | , , ) ( | ) ( )θ ψ θ ψ α α φ φ α φ= z (2)

Finally, the effects of uncertainty in the structural model parameters are included to yield the probability of
failure given that an earthquake has occurred:

P F P F p d( | ) ( | , ) ( | )θ θ ψ ψ θ ψ= z (3)

where p( | )ψ θ  is the conditional probability density for the structural parameters ψ  given the design parameters

θ  which is defined by the chosen probability model.

The failure probability over the lifetime of the structure is computed using an occurrence model for earthquake
events. Assuming that the occurrences of earthquake events follow a Poisson arrival process, the probability that
a performance requirement is not satisfied during the lifetime t  years of the structure, is given by:

P F P F tlife( | ) exp[ ( | ) ]θ ν θ= − −1 (4)
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where ν  is the expected number of earthquake events per annum in the region around the site.

Reliability Computations

It is reasonable to numerically evaluate the multi-dimensional integral in (2) or (3) only if the dimension is low.
Otherwise, efficient asymptotic methods [Breitung, 1989; Papadimitriou et al., 1997] or importance sampling
simulation methods [Schueller and Stix, 1987] can be used.

Consider first the case for which the conditional failure probability P F( | , , )θ ψ α  is a smooth function of ψ  and

α . An asymptotic approximation for the reliability integrals can be obtained which uses the value and Hessian

matrix of the logarithm of the integrand at the ‘design points’ where the integrand is maximized [Papadimitroiu
et al., 1997; Au et al., 1999]. The optimization method developed by Yang and Beck (1998) can be used to
search and locate the maxima. When ψ  and α  completely determine whether the structure has failed or not,

P F( | , , )θ ψ α  assumes a value of either 0 or 1. In this case, the reliability integral can be evaluated

approximately using available second order reliability methods [e.g., Der Kiureghian et al., 1987; Breitung,
1989; Polidori et al., 1999].

Importance sampling methods may also be used to obtain an estimate for the failure probability. These methods
also serve as a check against the accuracy of the asymptotic estimates. These methods are generally applicable
for both cases of P F( | , , )θ ψ α  discussed above. The efficiency of these methods depend critically on the choice

of the sampling density. When information about the design point(s) is available and the integrand is
characterized by a multi-modal function, the sampling density may be chosen as a mixture distribution centered
among the design point(s) [Au et al., 1999]. It should be noted, however, that there are many cases where the
search for design point(s) is difficult or the problem is not characterized by design point(s). In such cases, an
efficient adaptive importance sampling method developed by Au and Beck (1999) may be used. In this method, a
Markov chain is generated whose states are asymptotically distributed according to the optimal importance
sampling density and, therefore, samples are simulated that populate the important region of the integrand. The
sampling density is then constructed as a mixture distribution among the Markov chain samples. The method is
efficient, robust and applicable for a variety of topologies of the integrand.

ILLUSTRATIVE EXAMPLE

Structural Model and Design Criteria

The methodology is demonstrated by applying it to the design of a three-story, single-bay frame [Beck et al.,
1999]. The frame members are taken as steel I-beams with the length of the floor beams fixed at 6.1 m and the
height of the story columns fixed at 3.05 m. The design parameters θ  are the member flange width B  and web

depth D  in cm for the beams and columns, that is, θ = ( , , , )B D B Dbeam beam col col . The optimization is made over

a continuous space of θ . The possible range of values for design parameters are shown in Figures 1(a), (b). The

flange and web plate thicknesses are held fixed at 0.625 cm. Gravity loads are taken as 2 87 10 3. × −  MPa and

2 39 10 3. × −  MPa for the dead and live loads, respectively, for each floor and the roof. An out-of-plane tributary
width of 2.54 m is used for the gravity load calculations.
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Figure 1: Design criteria and corresponding preference functions

The objective is to determine θ  so that the frame design is optimized according to design criteria involving the

following performance parameters: flange width, web depth, building cost and probability of unacceptable peak
lifetime interstory drift (drift risk). The corresponding preference functions are shown in Figure 1. The same
importance weight is assigned to each design criterion in the aggregation of preference values in (1).

For this example, the building cost C  is expressed simply as the sum of a construction (or fabrication) cost Ccon

and a material cost, that is, C C c Vcon s( ) ( )θ θ= + , where cs  is the material cost per unit steel volume and V  is

the volume of steel used in the design. The variation in the construction costs for structural members of different
sizes is assumed negligibly small, so that Ccon  is essentially independent of θ . The preference function can then

be expressed in terms of a normalized performance parameter:

q C C C C V V V Vcost = − − = − −( ) / ( ) ( ) / ( )min max min max max min (5)

where Vmax ,= 362 810 cm3  and Vmax ,= 73 742 cm3  are the steel volumes corresponding to the maximum and

minimum allowable member section sizes prescribed by the geometric constraints. The preference function for
the building cost can therefore be expressed in terms of the steel volume V ( )θ  for a design given by θ . As

shown in Figure 1(c), a linearly decreasing function is used to specify the preference values for the building cost
in terms of the steel volume, with µ = 1  at the minimum allowable volume and µ = 0  at the maximum

allowable volume. In the tables of results presented later, the building cost is reported as the volume of steel, V .

Only one mode of ‘failure’ is considered here. ‘Failure’ occurs if the peak interstory drift ratio risk Fd  exceeds a

specified level over the lifetime of the structure. Failure modes corresponding to strength requirements can also
be considered, although it has been found that they do not control the design of the present structure. In the
numerical results, four pairs of peak interstory drift ratios and associated acceptable risks over the lifetime of the
structure (taken to be 50 years) are considered which correspond to the performance levels suggested in Vision
2000 [SEAOC, 1995]: (0.2%, 68.5%), (0.5%, 50%), (1.5%, 10%) and (2.5%, 5.13%), for fully operational,
operational, life-safe and near collapse states, respectively.

Probabilistic Seismic Hazard Model

In the probabilistic seismic hazard model considered, ground motion is characterized by the pseudo-velocity
response spectrum S Tv ( , )ζ  where T  is the period and ζ  is the damping ratio of a single degree-of-freedom

linear oscillator. The attenuation formula proposed by Boore et al. (1993, 1994) is used to model S Tv ( , )ζ  in

terms of earthquake magnitude and epicentral distance:

log [ ( , )] log [ ( , )] ( , )10 10S T S T Tv vζ ζ ε ζ= + (6)
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where

log [ ( , )] ( ) ( ) log10 1 2 3
2

4 5 10 6 76 6S T b b M b M b r b r b G b Gv b cζ = + − + − + + + + (7)

Here r R h= +2 2 , where R  is the epicentral distance and h  is a fictitious event depth determined by the
regression analysis; Gb  and Gc  are soil type parameters which take a value 0 or 1 depending on the soil

classification at the site. The best estimates of the parameters ( , )b b Ti i≡ ζ  appearing in the model for ( , )S Tv ζ
have been determined by Boore et al. (1993, 1994) by regression analysis of a large database of accelerograms.
The function ε ζ( , )T  in (6) represents the uncertain model error in the actual spectral amplitudes S Tv ( , )ζ

compared with the estimated amplitudes ( , )S Tv ζ  from the model. It is assumed to have a Gaussian distribution

over the range of periods analyzed, with zero mean and variance given in Boore et al. (1994).

Only the epicentral distance R  and the earthquake magnitude M  are considered to be uncertain in this study.
The probability distributions for these seismicity parameters are derived by assuming a simple seismicity model
as follows. The earthquake sources are point sources located in a circular area with a radius of Rmax  centered at

the site where the building is located. It is assumed that an earthquake is equally likely to occur at any point
inside this circular source region, so the probability p R dR( )  is simply the ratio of the area of a strip of width

dR  located R  distance away from the center to the area of the circle with radius Rmax , yielding the probability

density function p R R R( ) / max= 2 2 . The probability density function p M( )  for the earthquake magnitude

based on a truncated Gutenberg-Richter relationship is

p M b e e eb M b M b M( ) ' / ( )' ' 'min max= −− − − (8)

where Mmin  and Mmax  are the lower and upper regional bounds for the earthquake magnitude, and

b b e' log= 10 . The expected number of events per annum falling into the magnitude range considered is

ν = −− −10 10a bM a bMmin max . The following data are used for the parameters of the seismicity model:
Rmax = 50 km, Mmin .= 50 , Mmax .= 7 7 , b = 10. , a = 50. . These parameters give ν = 10.  for the seismicity

rate per annum.  The epicentral distance and the earthquake magnitude are assumed to be independent.

Reliability Computations

The uncertain parameter set φ  for the ground motion model describing S Tv ( , )ζ  consists of the magnitude M

and the epicentral distance R , so the probability density function corresponding to p( | )α φ  in the general theory

described earlier is p S M Rv( | , ) , where it has been assumed that only the fundamental mode contributes

significantly to the displacement response. (Design examples with multi-mode analysis can be found in Beck et
al., 1999). The fundamental modal damping ratio is assumed to be ζ 1 5%= . The interstory drift of the i -th

floor, di , is related to Sv  by d S Ti i v= β ζ1 1 1( , )  where βi1  is the effective fundamental modal participation

factor for the i -th floor. Assuming that the occurrences of earthquake events follow a Poisson arrival process,
the drift risk P Flife( | )θ  over the lifetime t  of the structure is computed from (4) where

P F P d d P d d S p S M R p M R dS dM dRi allow
i

n

i allow
i

n

v v v( | ) ( { }| ) ( { }| , ) ( | , ) ( , )θ θ θ= > = >
= =

z
1 1

(9)

is the failure probability given the occurrence of an event. Uncertainties in the structural model parameters are
assumed negligible. The resulting integral is in the form of the classical system reliability problem for
components connected in series: if any of the components fails, that is, if any d S di v allow( , )θ > , the system is

considered failed. It is evaluated using the asymptotic method described in Polidori et al. (1999).
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Numerical Results

As mentioned earlier, for the multiple performance levels, the following interstory drift ratio and corresponding
failure probability (in other words, exceedance probability or risk) over the lifetime t = 50 yr, are used: 0.2%
with 68.5% risk, 0.5% with 50% risk, 1.5% with 10% risk, and 2.5% with 5.13% risk. These risk levels
correspond to the Fl  in Figure 1(d) (while Fu  is taken as 101. Fl ). It should be noted that in this example all

reliability calculations are based on linear dynamics since a response spectrum approach is used, but for higher
performance levels (life-safe and near collapse), nonlinear behavior would be expected. Nonlinear structural
models can be treated within the framework presented here by simulation of the drift using a suite of
accelerograms scaled to a specified value of Sv  at the fundamental elastic period. A log-normal distribution is

then fitted to the simulated drift values to compute P d d Sallow v( | , )max > θ  [e.g., Shome et al., 1998].

Table 1: Optimal design for θ = ( , , , )B D B Dbeam beam col col

Freq./Fully Oper. Occas./Oper. Rare/Life-Safe V. Rare/Near Coll.
Criteria Value µi Value µi Value µi Value µi

Bbeam (cm) 10.41 1.00 10.41 1.00 10.41 1.00 10.41 1.00

Dbeam (cm) 73.66 1.00 52.10 1.00 38.80 1.00 31.67 1.00

Bcol (cm) 10.41 1.00 10.41 1.00 10.41 1.00 10.41 1.00

Dcol (cm) 70.39 1.00 38.65 1.00 28.43 1.00 23.40 1.00

Vol (cm 3 ) 212,714 0.519 150,806 0.733 123,503 0.828 109,369 0.877

Fd
0.685 1.00 0.500 1.00 0.100 1.00 0.051 1.00

Overall µ 0.897 0.950 0.969 0.978
Period 0.304s 0.537s 0.770s 0.959s

The results are presented in Table 1. To be able to see the effect of each performance level, one drift
performance level at a time is considered. The results imply that if all Vision 2000 levels were simultaneously
considered, the optimal design of the structure would be governed by the 0.2% interstory drift ratio with a
corresponding 68.5% risk over the lifetime. This case is equivalent to the requirement of being ‘fully operational
after frequent events’ for ‘basic facilities’ [SEAOC, 1995]. Notice that there is twice as much steel used in the
optimal design for the fully-operational criterion than for the near-collapse criterion. If this occurred during an
actual structural design, the design engineer would no doubt have to justify the considerable increase in costs to
the owner. One possible approach is to demonstrate that the decrease in the expected lifetime earthquake losses
outweighs the increase in building costs when the fully-operational criterion controls the design.

In Table 1, the optimal flange widths for beams and columns Bbeam  and Bcol  are always 10.41cm, which is the

smallest size that still gives µ = 10.  in the preference function shown in Figure 1(a). This occurs because it is

more cost-effective to provide the necessary bending stiffness by increasing the web depths Dbeam  and Dcol

rather than the flange widths Bbeam  and Bcol . However, if the flange widths are reduced below 10.41cm, the

reduction in the preference in Figure 1(a) outweighs the improvement in the cost preference in Figure 1(c).

CONCLUSIONS

The proposed optimal design methodology provides a rational basis for incorporating seismic load and modeling
uncertainties in the design process and to make reliability-based optimal design decisions that meet specified
multiple performance criteria. Code-based requirements are also easily incorporated into the process [Beck et al.,
1999]. This new framework is well-suited for performance-based design of structures under uncertainty.
Although the optimal design framework has been demonstrated for a special class of ground motion and
structural models, it is very flexible and more sophisticated models can easily be treated. For example, advances
in seismic hazard models can easily be incorporated into the framework. Also, an inelastic finite element
program can be included along with reliability approximations for nonlinear systems to more realistically treat
large deformations. The general framework presented here for multi-criteria optimal design under risk is
potentially applicable to a wide range of engineering systems, including buildings, bridges, offshore structures,
equipment and piping systems.
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