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EXPLICIT PSEUDODYNAMIC TEST WITH NUMERICAL DISSIPATION

Shuenn-Yih CHANG! And Gee-Yu LI1U?

SUMMARY

It has been generally recognized that numerical dissipation can effectively suppress the spurious
high-frequency responses. The a-function dissipative method developed by the author is a family
of second-order dissipative explicit methods. This family of integration methods is very suitable
for the pseudodynamic testing since the favorable numerical dissipation can be used to suppress
the spurious growth of high-frequency responses due to the presence of numerical and/or
experimental errorsin performing a pseudodynamic test. Error propagation analysis of this family
of integration methods is completed in order to explore the numerical damping effect for the high
frequency modes during the pseudodynamic testing. In addition, a simple two degrees of freedom
specimen is designed to verify the improved numerical dissipation. The specimen selected is atwo
degrees of freedom cantilever beam, with the masses chosen to give a high natural frequency and a
low natural frequency. For this multiple degree of freedom system, the lower mode is responsible
for the seismic response and the higher mode contributes very insignificantly. Both the Newmark
explicit method and the a-function dissipative explicit method are employed to perform a series of
the pseudodynamic tests.

The error propagation analysis of the a-function dissipative method shows that the suppression of
spurious growth of high-frequency response can be obtained and a less error propagation effect is
confirmed when compared to the Newmark explicit method. This conclusion is also manifested
from the verification test results. Thus, the use of numerical dissipation to eliminate or suppress
the high frequency response is benefited in performing a pseudodynamic test.

INTRODUCTION

It is generally recognized that the well control of pseudodynamic errorsis the key to yield reliable results since
these errors tend to propagate and accumulate from the initiation to the remainder of the test. Pseudodynamic
errors introduced in each time step can be reduced if a high performance of test equipment is employed. Besides,
it is aso very important to select an appropriate integration method to perform the step-by-step integration since
a good pseudodynamic algorithm will exhibit aless error propagation effect and thus leads to more accurate test
results.

In genera, the high-frequency modes of spatially discretized equations of motion do not represent the real
behavior of the original structure. In addition, the numerical errors will excite the spurious growth of the high-
frequency responses and this effect will be significantly aggravated by the presence of experimental errors in
performing a pseudodynamic test. Therefore, it is advantageous for an integration algorithm to have numerical
dissipation to suppress or eliminate the high-frequency responses. It has been discovered in the prior studies
[Shing and Mahin, 1983, 1984,1987b and 1990] that cumulative errors of a pseudodynamic test are increased
with the value of the natural frequency of the test specimen times the step size. This indicates that a more severe
error propagation effect will be encountered in the higher modes than in the lower modes. In fact, the spurious
growth of high frequency responses may significantly contaminate the test results if the pseudodynamic errors
are systematic and of the energy-addition type [Shing and Mahin, 1983]. Thus, a dissipative integration method
is generally preferred since it can effectively eliminate this spurious growth of higher modes [Chang, 1997,
Shing and Mahin, 1987a] while the lower modes can be integrated very accurately. Recently, the a — function
dissipative explicit method is successfully developed and shown to possess the desired numerical dissipation
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[Chang, 1997]. In order to investigate its performance in pseudodynamic tests, this integration method is
carefully implemented and its error propagation effect is also thoroughly analyzed. Finaly, a series of
verification tests are performed.

A DISSIPATIVE EXPLICIT PSEUDODYNAMIC TEST METHOD

A direct integration method is in general needed in performing a pseudodynamic test [Takanashi et. al., 1975]
since its procedure is very similar to the step-by-step time history analysis except that the measured restoring
force is used to take place of the mathematical simulation of the restoring force. General expression for the
o — function dissipative explicit method can be written as:

Mai+1 +Cvi+1 +(I +a)ri+1 _ar\ :fi+1

d.. =d, +(at), +%(At)2a‘ )

Viw =V, +§(m)(ai +a.)

where M and C are the mass and damping matrices; r.,, and f.,, denote the restoring force vector and the
external force vector. In addition, d,,,, v,,, and a,, represent the vectors of displacements, velocities, and
accelerations, respectively. The subscript i +1 indicates the time step at t = (i +1)(At) and | is used to denote
an identity matrix. The restoring force vector r,,, also can be expressed as r,,, =Kd,,; where K isthe tangent
stiffness matrix. The matrix coefficient a is defined to be:

a= ic [atym k)’ ©)

where scalar coefficients ¢, are appropriate constants. It has been shown that only the first one or two terms are
good enough to yield the desired numerical dissipation [Chang, 1997]. It is worth noting that the initial stiffness
matrix K, is different from the tangent stiffness matrix K . This integration algorithm will become the well-
known Newmark explicit method [Newmark, 1959] if a =0.

In this study only the first term on the right hand side of Eq.(2) will be considered. Basic numerical
characteristics of the a - function dissipative explicit method have been thoroughly explored in Reference
[Chang, 1997] and will not be elaborated here. However, the variation of the numerical dissipation versus the
value of Q = w(At), where w is the natural frequency of a linear single-degree-of-freedom system and At is

size of integration time step, for different values of c, isplotted in Fig.(1).

Before performing a pseudodynamic test, it is necessary to determine the initial stiffness matrix K , to yield the
coefficient matrix o, which will be kept unchanged for the whole test. For each time step, the displacement
increment d,,, —d; can be computed from the second equation of Eq.(1), and is quasi-statically imposed upon
the specimen by using servo hydraulic actuators. The restoring forces developed by the specimen are measured
immediately after the stop movement of actuators and sent back to the computer for the subsequent

computations. Next, the velocity and acceleration can be obtained from the first and third equations of Eq.(1).
This procedure can be repeated until the desired response time history is achieved.

¢, = 0.00

rrrrrrrr ¢, = 005
¢, = 0.10 / E
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Numerical Damping Ratio

Figurel: Variation of numerical damping ratio versus Q
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ERROR PROPAGATION ANALYSIS

In performing a pseudodynamic test, it is very difficult to exactly impose the computed displacements upon the
test structure due to the displacement control errors and thus results in the incorrect restoring forces [Chang,
1992, shing and Mahin, 1983]. In addition to the displacement control errors, the actually developed restoring
forces may be incorrectly measured and sent back to the computer with errors. Hence, these errors will lead to
the force feedback errors and be carried over to the subsequent computations. Obvioudly, the error propagation
effect is that the incorrect imposed displacement leads to the incorrect force feedback and the incorrect restoring
force results in the incorrect displacement, which will be imposed upon the specimen for the next step.
Consequently, it is very important to evaluate the error propagation effect for a step-by-step integration method
since the accuracy of the pseudodynamic test results are closely related to it.

It has been shown that a linear pseudodynamic test will experience more severe error propagation effect when
compared to a nonlinear pseudodynamic test and the error propagation properties for a linear multi-degree-of-
freedom system can be deduced from the results of a linear single-degree-of-freedom system based on the modal
superposition method. Thus, the error propagation analysisis in general performed for alinear single-degree-of-
freedom system. The error propagation analysis procedure developed in References [Shing and Mahin, 1983,
1987b] will be employed here. For an undamped single-degree-of-freedom system, the general expression for the
o — function dissipative explicit method can be written as:

ma,., +(1+(])I’H1 —ar, = f,

d=d, +(0h +2 (002 3

+§(m)(a\ +a,)

where a isascaar andis:

a= Z c Sm)ZBK% (4)
= O 0Om
inwhich m and k are the mass and stiffness of the system, f,,, isthe external force; d.,,, v,,, and a,, arethe

approximations to the displacement, velocity and acceleration, and r,,, isthe measured restoring force.

In performing the error propagation analysis, it will be convenient to introduce the following scalar notations for
the subsequent derivations and discussions.

d

, exact numerically computed displacement at step i without errors.
d?® = exact displacement at step i , including the effects of errors at previous steps.

d? = actual displacement at step i, including the effects of previous errors and errors introduced at the current
step.

r, = exact numerically computed restoring force at step i without errors.
r° = exact restoring force at step i , including the effects of errors at previous steps.

r? = actual restoring force at step i, including the effects of previous errors and errors introduced at the
current step.

e’ = displacement error introduced at step i .

e’ = forceerror introduced at step i .
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Based on the above definitions for the displacement and force quantities, it is very straightforward to construct
the following equations:

— d
dil - d\eﬂ + Qﬂ (5)
a —ype r
la =lia + €.

In addition, the relationship €',, = ke, is also introduced and thus € denotes the amount of displacement

error corresponding to €, .

If there does not exist any errors in an idealized pseudodynamic test, the computing procedure for the use of the
o —function dissipative explicit method can be written in a recursive matrix form as:

X, = DX, =(1+a)ir., +alr +If,, (6)

However, for an actual pseudodynamic test, the displacement and force errors are inevitable. Thus, based on the
actual displacements and restoring forces, Eq.(6) becomes:

Xt =DX? = (L+a)irs, +alr? +1f (7)

In the derivations of Egs.(6) and (7), the following notations are adopted:

0d O 0 d: O 0 dr D 01 40 o)
Xi:E(AtZ\/iE coxi=glede g xe=glede g D=0 1 45 , I= = a0 ®
Hat)ya g Hat) ar g Hat) a2 g 9 0 0§ RH

In addition, if r, and r,* are replaced by SX;and SX?, respectively, where S= (k, 0, 0) is introduced, one can
have X, = AX, +Lf,, and X3, = AX? +Lf,,, inwhichthe amplification matrix A and theload vector L are
found to be A =[l +(+a)g*(D+alS) and L =[l +(1+a)iS| ™I, respectively. After defining the cumulative
error vector €, = X7 — X, , the following equation can be obtained:

£.. = A€, +Bef +Clael’ -(1+a)e] ©)

where B=[l +(1+a)§|"D and C=[I +(1+a)S|"IS. Assuming &, =0 and performing a series of repeated
substitutions, Eq.(9) reduces to:

€., = Z AL)Bgd — Z AtIclaer - (1+a)er,| (10)

In addition, by means of the spectral decomposition [Clough and Penzien, 1993], the following cumulative
equation can be obtained:

-1

e, = Z{ = cos[(n -i)Q + 9] }Qd - Z{ E/ sin[(n - i)ﬁ] } [ae® - (@1+a)e] (11)

where e, =d?, —d,,, isthe cumulative displacement error. On the right hand side of Eq.(11), the first term is

the cumulative errors due to displacement feedback errors and the second term is the cumulative errors due to
force feedback errors. The symbols E° and E' are used to represent the error amplification factors for the

displacement feedback errors and for the restoring force feedback errors at the i —th step, respectively. Their
explicit expressions are found to be:
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_ 2 (n-i) _ 2 (n-i) 1
£ = Wi-aQ?) Cpoi-a@t) o g t(+a) 12

 1-:@+a)Q? 1-:@+a)fQ? 1-:@+a) Q?

where 8 is aphase angle, n is the total number of time steps and i is the specific i —th time step. It is very
interesting to consider the case of o =0 to represent that for the Newmark explicit method:

d — 1 r — Q -1 D
F¢=— - | E'=——" | f=tan E—l—D (13)

1-10° N T I Al-10°§

It is manifested from Eq.(12) that E* and E' depend upon the value of (n - i) while they are independent of
(n - i) for the Newmark explicit method asindicated in EQ.(13).
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Figure 2:  Error amplification factor for displacement ~ Figure 3: Error amplification factor for restoring
Feedback error (0( = 0.15) force feedback error (cx = 0.15)

In order to clearly distinguish the error amplification factors between the Newmark explicit method and the
o — function dissipative explicit method, Eqgs.(12) and (13) are further plotted where the total number n is taken

to be 1000 time steps and o =0.15is assumed. Variations of E® versus Q for the Newmark explicit method
and the a — function dissipative explicit method are plotted in Fig.(2) and those for E versus Q are described
in Fig.(3). It is manifested from Fig.(2) that E for the Newmark explicit method is increased with Q . This

curve moves upward starting from 1 very dowly for small value of Q while it becomes very rapidly as Q tends
to 2. It is clear that each E® curve for the o — function dissipative explicit method is varied with the value of |

for agiven value of Nand it moves upward as the step | increases from 0 to 1000. In addition, it seems that all
the ES curves drop from 1to 0 as Q increases from O to the stability limit for | between 0 and 990. On the

other hand, for 990 <i <1000, the Newmark explicit method shows larger error amplification factor E° than

those of the a — function dissipative explicit method and only for i =1000 it shows a smaller value. Thus, the
o — function dissipative explicit method exhibits less error propagation effect, which is caused by the
displacement feedback errorsin this figure, when compared to the Newmark explicit method.

Similar phenomena are also found for E/ and will not be elaborated here again. The dight discrepancy is that
the starting point is 1 for all the E® curves and O for all the E/ curves. Obviously, thisis due to the relation of
= QE/ . This error propagation analysis concludes that the o — function dissipative explicit method has
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much better error propagation properties than for the Newmark explicit method. In fact, the o - function
dissipative explicit method not only possesses less error propagation effect than for the Newmark explicit
method but also provide the favorable numerical dissipation in performing a pseudodynamic test.

ACTUAL PSEUDODYNAMIC TESTS

In order to illustrate the favorable numerical dissipation and superior error propagation effect of the a —function
dissipative explicit method, a series of verification tests are performed in this study.

Test set-up

A cantilever beam is made up of a 3.2m long, hot-rolled steel beam and is loaded by 2 static actuators in order
to simulate a 2-degrees-of-freedom system. The implementation details are shown in Fig.(4). In the pilot tests,
the linear elastic range for the specimen is found to be very small and the built-in LVDT of the actuator can not
give an accurate reading of displacement due to the lack of resolution for this small range. The Temposonic 111
transducer, which is a 24-bit digital sensor, is externally installed along the alignment of each actuator to provide
better accuracy in the reading of displacement. These sensors have a feedback signal resolution of 0.005mm
along the full range of £250mm and were used to take place of theinternal LVDT within each actuator.

e

Jvdd

H 200x 200x8x12 | e e e |

T DOF -1 DOF -2

95 cm
207 cm

Figure4: Test set-up for the pseudodynamic testing

Test results

At first, the initia structural stiffness matrix for the test specimen can be experimentally measured and is found
to be:

0 25.95 —19.350]
Ko=0 0 (14)
T19.35 16.350
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where the unit for each element isin kN / mm. The lumped masses corresponding to the first and the second
degree-of-freedom are specified to be m, =70535kg and m, =3570kg . Thus, the natural frequencies of the
cantilever beam are w, =6.28rad / sec and w, =70.00rad / sec . The structural system is subjected to the El
Centro earthguake record with a peak ground acceleration of 0.0025¢g . Both the Newmark explicit method and
the a —function dissipative explicit method with a = 0.15 are used to perform the pseudodynamic tests using a
time step of 0.02sec. All the experimental results from the pseudodynamic tests and the numerical results from
analytical simulations are shown in Fig.(5). In computer simulations, 1.6 % viscous damping ratio is added into
the system to compensate the energy dissipation caused by the friction in the actuator clevis.
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—
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Figure5: Pseudodynamic responsefor the 2-DOF system

It is manifested from Fig.(5) that the a —function dissipative explicit method with o = 0.15 provides more
accurate test results than for the use of the Newmark explicit method. Obviously, the cause to different accuracy
of the test results between the two integration methods is the numerical dissipation effect and thus the error
propagation effect. For the use of At =0.02sec, the valuesof Q, and Q, corresponding to the first and second
modes are found to be Q, = w, (At) =0.126 and Q, = w, (At):1.400, respectively. Thus, for the a —function

dissipative explicit method with a = 0.15, it will provide about 21.5% numerical damping ratio to suppress the
spurious participation of the second mode responses while there is almost no numerical dissipation for the first
mode to affect its accurate integration. On the other hand, the Newmark explicit method is a non-dissipative
integration method and can not give any numerical dissipation for the two modes. Hence, the errors introduced in
the second mode may be more significantly propagated and accumulated than for the a —function dissipative
explicit method with a =0.15 as indicated in the Figs.(2) and (3) even though the first mode response can be
very accurately integrated. As a result, the pseudodynamic test results might be severely contaminated or even
entirely destroyed.
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CONCLUSIONS

The a —function dissipative explicit pseudodynamic algorithm is successfully implemented and tested herein to
illustrate its improved numerical dissipation and superior error propagation effect. This explicit integration
method exhibits the favorable numerical dissipation since it has a zero damping at the origin and then turns
upward gradually. Finally it becomes very steeply as Q approaches to the stability limit. This strongly indicates
that the spurious growth of high frequency responses will be effectively eliminated while the lower modes can be
integrated very accurately in performing a pseudodynamic test. In addition to the numerical dissipation effect,
this pseudodynamic algorithm also shows much better error propagation effect when compared to the very
commonly used Newmark explicit method. Error propagation analysis implies that the elimination or
suppression of the spurious growth of the high frequency responses will also lead to the less error propagation
effect than for a non-dissipative pseudodynamic algorithm. Consequently, the o —function dissipative
pseudodynamic algorithm is very suitable for the test structure with high frequency modes and the high
frequency responses are of no interest.
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