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UNCERTAINTY MODELING FOR DISASTER LOSS ESTIMATION
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SUMMARY

This paper delineates the many kinds of uncertainties that must be properly accounted for in
estimating losses caused by natural disasters, and the effects they have on risk management.
Uncertainties associated with each step of the loss estimation chain, in the context of prevalent
engineering models, are discussed. It is shown that the main sources of uncertainties such as
occurrence, attenuation and vulnerability uncertainties may be classified into two general groups:
aleatory and epistemic. The latter includes model and parameter uncertainties, as well as
incompleteness of information such as site condition, structural details or policy terms. In
particular, aleatory uncertainties lead to losses that are distributed, as compared with point
estimates; distributed-ness affects loss allocations to the insured, insurer and reinsurer. The
average annual loss and exceedance probabilities are also affected. Epistemic uncertainties widen
the loss distribution further, but, most importantly, they cause losses at different locations (and
losses of different portfolios) to be correlated. Such loss correlation has strong ramifications on the
aggregate portfolio risk, and must be included in the modeling.

INTRODUCTION

As is well known, disaster loss estimation for the purpose of financial planning consists of the following parts:

•  A source model, which predicts a series of events with various sizes, locations and frequencies.

•  A site hazard model, which estimates the local severity of hazards including attenuation from the
source.

•  A vulnerability model, which estimates the asset loss given the local hazards.

•  A financial model, which calculates the portion of the loss allocated to specific financial perspectives,
e.g., the insured, insurer and reinsurer, based on the policy/portfolio structure and the uncertainty in the
asset loss.

Uncertainties exist in each of the four modules in the assessment chain, and their cumulative effects are
manifested in very important financial impacts. In particular,
For location loss, they cause a shift in the mean loss of specific financial perspectives.

•  For policy/portfolio (multi-location) loss, they cause correlation between losses at different locations
and, hence, a shift in the mean loss of specific financial perspectives.

They cause uncertainties in the average annual loss and exceedance probabilities, two key measures of risk in
management decision.

The uncertainty models and their effects will be delineated in the following. To facilitate the discussion, we shall
limit source uncertainties to uncertainties on the rate of occurrence. In other words, all events (their numbers and
magnitudes) pertinent to the assets in question are assumed known; only how often they occur is uncertain, and
uncertain occurrences lead to uncertainty in loss. We refer to these uncertainties as OR uncertainties. On the
other hand, given an event, uncertainties in site hazards, vulnerability, etc., will also lead to uncertainty in loss.
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We refer to these uncertainties collectively as SV uncertainties. Due to space limitation, the discussion favors
not details, which are left to the references, but the impact these uncertainties have on loss estimation and
portfolio risk quantification. An appreciation of the latter is especially important since it underscores why
uncertainty modeling is essential in disaster loss estimation. Uncertainties are, quite simply, an indispensable
part of any risk model.

It is also important to recall that uncertainties can be aleatory or epistemic in nature. Aleatory uncertainty is
intrinsic, the irreducible uncertainty of the probabilistic phenomenon itself. Epistemic uncertainty is attributed
to a lack of knowledge, and is reducible only at the expense of a very large sample size and accumulated
knowledge. Epistemic uncertainty can be related to validity and accuracy of a model (hence, called modeling
uncertainty), or the statistical basis for the parameters of the model (called parameter uncertainty). While
both the aleatory and epistemic types contribute to the ultimate uncertainty in the loss, epistemic uncertainties
are largely responsible for the correlation between losses at different locations or from different portfolios. Such
correlation plays an essential role in financial risk management. Insurance companies that issue catastrophe
policies such as for earthquakes and hurricanes are concerned with their probable maximum loss (PML). Their
portfolios consist of many individual policies, and the maximum loss is an aggregation of the losses from the
individual policies. Reinsurance companies that issue catastrophe treaties to primary insurers are also concerned
with their portfolio risk. In this case, the risk is an aggregation of the risks of the primary insurers’ portfolios.

This paper discusses how portfolio losses can be determined from their component (policy or cedant insurer)
losses. For a portfolio with assets at many different locations, the mean of the aggregated loss is simply the sum
of the mean location losses. However, the computation of the standard deviation of the aggregated loss is more
complicated because losses at any two locations may be correlated. Such correlation is known to have significant
impact on the distribution of the aggregated loss. Less well known but equally important is the fact that the
allocation of losses to the reinsurer, such as under an excess-loss treaty, depends not only on the mean of the
aggregated loss but even more so on the loss distribution. Hence, location loss correlation plays an important part
in quantifying portfolio risk.

UNCERTAINTY MODELS

Or Uncertainties

State-of-the-art research indicates that the time-independent Poisson model is adequate for modeling the
occurrence of earthquakes and hurricanes, although in parts of the country such as California where a larger
database may support a time-dependent model (e.g., the USGS model for earthquakes [Cornell and Winterstein,
1986], [USGS, 1988], [USGS, 1990]). However, the average rate, λ, a parameter of the Poisson model, is subject
to uncertainty due to (for earthquakes) relative short recording periods compared with the recurrence interval of
the events of interest, and (for both earthquakes and hurricanes) due to limited knowledge. Many studies have
been performed in which geological and geophysical data are used to reduce the uncertainty in the occurrence
rates of earthquakes [Dong, et. al., 1987], [Wesnousky, 1986], [Mark, 1996], [Cramer et. al., 1996], [Dong,
1997]. For hurricanes, the corresponding physical quantities are not available, and occurrence data are used to
estimate the statistical error in rate estimation [Gorden et. al., 1997].

Hence, physical quantities underlying the Poisson model contain uncertainty, leading to epistemic uncertainty in
the estimate of rates in addition to the aleatory uncertainty inherent in the model. We assume that the occurrence
rate, λ, follows the normal or lognormal distribution so that its uncertainty is defined by two parameters such as
the mean mλ and standard deviation σλ . mλ λσ and  have been related to uncertainties in creep and slip rate

(e.g., see [USGS, 1988], [USGS, 1990], [USGS, 1995]).

Sv Uncertainties

Ground Motion Attenuation - Current methods for estimating ground motion belong to two groups: methods
based on wave propagation and empirical methods, and the latter is more widely used. One popular empirical
model is attributed to BJF [Boore, Joyner and Fumal, 1993]:

log . . log .A M R R= − + − − +0 95 0 23 0 00270 1 1 ε (1)

where A = peak ground acceleration in g, M0 = the moment magnitude, R d1
2 28= + , d = closest distance

to the surface projection of the fault rupture in km, and ε  is a zero-mean normal random variable that represents
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the aleatory uncertainty. In particular, through comparison with available ground motion data from recent
earthquakes [Joyner and Boore, 1988], ε  is shown to have a standard deviation of 0.28 (i.e., σlog .A = 0 28 ).

Note that while the median values of peak ground acceleration of two neighboring locations are highly correlated
through the function logA in Eq.1, their random variation portions denoted by ε in the equation are independent.

Because there is no consensus on which of the many attenuation relationships proposed is the best, epistemic
ground-motion uncertainty can be modeled as different relationships between peak acceleration, earthquake
magnitude and distance from fault (e.g., in a logic-tree approach such as that used in [Cramer et. al., 1996]).
Hence, the resultant modeling uncertainty can be as significant as the respective aleatory uncertainties such as
the ε  for Joyner and Boore shown in Eq.1, and unlike the latter, is correlated for all locations. That is, if a model
chosen gives “high” ground motions, then the ground motion for all locations based on that model will be
“high”.

Vulnerability Uncertainties - While structures of the same type tend to perform similarly, they exhibit a deal of
variability due to differences in details. Based on analysis of expert opinions, ATC-13 [ATC, 1985] recommends
that the mean damage ratio be related to ground motion intensity and building class as:

m g MMI classR = ( , ) (2)

with the damage ratio R for a particular building within the class be given by:
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where r is the damage ratio in percent, and λ and ν  are parameters of the Beta function B and can be related to
the mean damage ratio given in Eq.2 and the coefficient of variation of the damage ratio. Hence, the model
reflects that damage is random and, for the same intensity, independent of location. In particular, buildings of the
same type at the same nominal location can have very different damages due to aleatory uncertainty.
Since the mean damage ratios solicited in the ATC-13 survey exhibit quite a wide range, and the mean damage
affects λ and ν , parameters of the Beta function, variation in the mean damage ratio is parameter uncertainty – a
variation that is totally correlated and constitutes a systematic error due to lack of knowledge of the real mean
damage ratio. For example, if the real mean is 10%, and 8% is used in determining the Beta distribution, then all
damage ratios randomly generated based on the Beta distribution with the lower mean will be underestimated.

Incomplete Information - It often happens in loss estimation that many pieces of information are not available.
A common example is that only the aggregate exposure of n buildings at a particular zip code is known, but the
individual buildings are not. One may have to assume that the buildings are uniformly distributed in all building
classes, and the average damage ratio based on this assumption may be larger than the actual. The same situation
exists in dealing with soil data with various degrees of accuracy/precision (regional, zip code, or census tract
data).

Uncertainty associated with incomplete data is epistemic, and can only be reduced with more data collection
effort. As things stand, various assumptions can be made regarding the distribution of such uncertainty and used
in loss estimation, but the best approach is evaluation by experience and judgment on a case-by-case basis.

EFFECTS ON LOSS

Uncertainties in occurrence, attenuation, vulnerability, and incomplete information are combined to yield the
uncertainty in building loss estimate, as depicted in Fig.1. To improve clarity in discussion, the effects due to OR
uncertainties is further separated from that due to SV uncertainties. The latter is also called loss uncertainty
given an event, which we shall address first.
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Given an event, uncertainties in attenuation and vulnerability as well as incomplete information can be
channeled into the two groups marked “aleatory” and “epistemic”. Aleatory uncertainties contribute to the
probabilistic variation in building loss at a location; as a result, the building loss is now distributed, as compared
with deterministic. We refer to this effect as distributed loss for emphasis. The effects of epistemic uncertainties
are more complex and can best be delineated with reference to a single building (location), or multiple buildings
(locations). With respect to the loss of a single building, epistemic uncertainties contribute further to the
distributed-ness in the loss (e.g., incomplete information on the soil type admits all possible soil types, and,
hence, begets a wider range of hazards). They widen the loss distribution. With respect to buildings at multiple
locations, epistemic uncertainties contribute to correlation of the losses of the buildings due to an event (i.e.,
when the loss at one location is higher than the average, the loss at a different but correlated location is also
high). Major factors contributing to loss correlation are: Geographic (buildings in the same soil pocket),
vulnerability (buildings of the same class), geologic (buildings on the same soil) and attenuation (buildings at
same distance to fault). The epistemic effect relationships are singled out in Fig.1 for emphasis.

To appreciate the effects due to OR uncertainties, it is expedient to assume for the moment that SV uncertainties
are zero. Building loss given that a specific event has occurred is then deterministic. Call it Li where i denotes the
event. Building loss corresponding to an event whose occurrence is governed by the Poisson process is
probabilistic, and the average annual loss, denoted by AAL is λiLi where λi is the rate of occurrence. This
accounts for the aleatory uncertainty in occurrence. When the rates themselves are uncertain, i.e., epistemic
uncertainty in the model parameter, the probabilities of one event, two events, …., occurring in a year will vary,
and, hence, the resultant loss distribution is affected. In particular, the AAL is random with mean and variance
given by:

AAL L Var AAL Li i ii
= =λ σλ    and   ( ) 2 2 (4)

where λ σλi
i

 and  are the mean and standard deviation of the rate of occurrence, respectively. If we now

incorporate the SV uncertainties into the process, Eq.4 becomes:

AAL L Var AAL Li i i L i Li i i i
= = + +λ λ σ σ σ σλ λ   and    ( )

2 2 2 2 2 2
(4a)

where Li Li
 and σ are the mean and standard deviation of building loss due to SV uncertainties.

In a similar but more complex fashion, the
occurrence exceedance probability (OEP) and the
aggregate exceedance probability (AEP) for a
threshold value can be shown to evolve from
“deterministic” to probabilistic due to OR uncertainties. Details are too cumbersome to include herein, but
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Figure 1. Effects of uncertainties on loss estimation, an overview.

Allocation Method Client Loss Insurer Loss
Point-Estimate 7% 0%
Distributed 5.2% 1.8%



03645

suffice it to say that higher layers tend to have larger rate variability; large losses are caused by severe events
which by nature are infrequent, and there is scarce data for those events.

Hence, in summary, aleatory and epistemic components of uncertainty contribute to the distributed-ness in the
loss (pertaining to a single building) and epistemic components contribute to loss correlation (pertaining to
multiple buildings). Loss correlation increases the spread in the aggregate loss for multiple buildings or
portfolios. These effects, in turn, influence decision parameters such as the average annual loss, exceedance
probabilities and allocated loss. We shall illustrate these main points in the following.

IMPORTANCE TO INSURANCE RISK MANAGEMENT

Loss  Allocation To The Insured And Insurer (Effect Of Distributed Loss)

Suppose the estimated damage of a building has a probability density distribution as depicted in Fig.2, with an
expected (mean) damage of 7%. Suppose the coverage deductible is 10%. We compare the loss allocations made
based on a point-estimate of damage, say, the expected damage, and based on the distributed damage in the table
below.
In the former case, because the point-estimate damage (at 7%) is less than the deductible, the client incurs all of
the loss. In the latter, the damage is sampled from the distribution curve, and the loss allocated base on the
sample damage and the deductible. Hence, for sample damages that are below the deductible, 100% of the loss
goes to the client. For sample damages greater than the deductible, the client accepts the deductible, and the
excess goes to the insurer. The sample allocations are then weighted by the appropriate probability density. For
this example, the net mean loss allocations are 5.2% for client and 1.8% for insurer.

Hence, mainly because of the presence of deductibles, the loss allocation can be warped if the point-estimate
damage only is used. Deductibles are said to influence the allocation at the lower end, as they are designed to do.
Similarly, the presence of limits affects the allocation at the high end, and other policy structures and portfolio
applications have interactions with the distributed loss. While the example shows the mean values of the
allocated losses are affected, the standard deviations of the allocated losses are also affected.

Loss Allocation To The Insured, Insurer And Reinsurer (Effect Of Loss Correlation)

A policy/portfolio with assets at many different locations will suffer loss when any of the locations suffer a loss.
It is well known that the mean loss for a portfolio is the sum of the mean location losses. But the standard
deviation of the portfolio loss depends not only on the standard deviation of the location losses, but the

f(x)

Loss

Expected
Loss=7%

Deductible=10%

Loss
Distribution

Figure 2. Simple example on the difference between expected and
distributed loss allocations.
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correlation that may exist between losses
at pairs of locations. For example,
consider a portfolio with 100 locations
and the policy coverage is $100,000 per
location, for a total coverage of $10
million (100 × $100,000). Suppose the
policy has a 5% deductible so that the
amount of deductible is 5% of $10
million or $0.5 million. Suppose further
that the mean damage to all locations is
the same, at 10% damage. Hence, the
expected loss to the portfolio is $1
million (10% of $10 million is $1
million). We shall compare the portfolio
losses for two cases: when the location
losses are totally independent, and when
they are totally correlated.

Loss results for the two cases are
generated by Monte Carlo simulations
with a sample size of 10,000 and a
coefficient of variation of 1.6 for location
loss. They are presented in Fig.3 and
compared with results for the no-
uncertainty case. With reference to the
figure, we see that when location losses
are totally independent, the aggregate
loss distribution is concentrated (i.e., a
coefficient of variation of approximately
0.16). The distribution is centered around
the deterministic value of $1 million.
When the location losses are totally
correlated, the aggregate distribution is
spread out over a wide range; the
coefficient of variation is about 10 times
the independent case.

These differences in distribution have significant impact on the allocation of insurer/reinsurer losses. We use the
treaty structure shown in Fig.4b to illustrate this important point.  Applying this structure to the loss results when
there are no uncertainties (Fig.4a), the loss of $1 million is above the deductible of $0.5 million, and, hence,
affects FAC1 but not FAC2. The allocation to FAC1 is (1-0.5)*40%=0.2. When the effects of uncertainties are
included but their effects are independent (Fig.4c), the aggregate loss is distributed but the distribution is narrow
banded. For this example, the distribution does not spread beyond $2 millions so that FAC1 is still the only
treaty affected, as in the no-uncertainty case (although the losses allocated will be different, as is obvious from
the figure). When uncertainties are included and their effects are totally correlated (Fig.4d), the aggregate loss is
widely spread and both treaties are activated; all have allocated losses and the numerics is straightforward.

Average Annual Loss And Exceedance Probabilities (Effect Of Epistemic Uncertainties)

OR uncertainties, even when acting alone, affect the confidence in the estimate of the loss exceeding
probabilities and the average annual loss, two measures that are of paramount importance to catastrophe risk
managers. For example, the 95-percentile value of the exceeding probability for a particular loss threshold can be
1.15-1.75 times the best estimate, depending on the regional diversification and threshold position. The higher
the threshold and the more concentrated the portfolio area, the wider will be the 95-percentile bounds. The effect
of occurrence uncertainty on the average annual loss is to enlarge its confidence interval. The coefficient of
variation with rate uncertainty is about twice that without. Depending on the geographical diversification, the 90-
percent confidence interval can be 100± 26% of the mean for large areas, and 100±45% of the mean for
concentrated areas.
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Figure 3. Density distribution of total asset loss with and
without consideration of uncertainties.
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SUMMARY

Inherent in the difficulty of managing catastrophe risks is the presence of uncertainties. There are uncertainties
associated with the occurrence of an event, and, for an event, the loss induced is uncertain due to uncertainties in
the hazards and vulnerability. The phenomenology models themselves, even with the state-of-the-art engineering
sciences, are inherent uncertain due to scarce database and limited knowledge. These uncertainties, some
epistemic and some aleatory, were discussed in the paper to emphasize that they have important bearing on key
financial decision parameters. Hence, they must be properly quantified and their effects included in loss
estimation, difficult though the task may be.

While existence of these uncertainties is commonly acknowledged, how they interact with the “bottom line”
does not appear to have been well publicized. Part of the reason is that the interaction is complex and difficult to
summarize without doing injustice. Generalization is even more dangerous. Nevertheless, it may be said that the
presence of uncertainties has two major consequences in loss estimation. First, they contribute to uncertainties,
i.e., probabilistic variation in the loss estimate – which we emphasized by calling the result distributed loss.
Lesser known is the fact that distributed loss interacts with the structures of a policy/portfolio, and the allocation
of the mean losses to the insured, insurer and reinsurer can be greatly affected. Simply put, treating the loss
estimate as deterministic, i.e., ignoring uncertainties, will have grave ramifications.

The second major consequence of uncertainties is that the distributed losses at different locations of interest
(such as those covered by a policy/portfolio) may also be correlated – which we called loss correlation. Loss
correlation is attributed to epistemic uncertainties, and its essential role in portfolio risk management, though
well-acknowledged in general concept, is seldom delineated in detail because of the complexities involved. This
paper indicated how it evolved from the basic (epistemic) uncertainties in the loss estimation chain, and how it
could be quantified. More on its impact on financial decisions is given in a companion paper in the same
proceedings [Dong and Wong, 2000].
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Figure 4. Insurance structure used in example.
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