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SUMMARY

We will present the definition of the differential ground motions on free-field ground surface, and

then describe numerical examples to show the characteristics of the differential ground motions as

well as those of near-field ground motions. The differential ground motions and the ground

motions in this paper are synthesised using a discrete three fold Fourier transform of the analytical

forms of seismic wave field. They are derived by a stiffness matrices-based formulation of the

physical processes of propagation of the seismic waves generated by a kinematic fault rupture

model buried in horizontally layered media. In consequence, the differential ground motions and

the ground motions in this paper can be synthesised in quite accuracy, because the seismic wave

field in our method is represented as a simple sum of plane waves with the complex amplitudes

given by the analytical forms in frequency wave number domain.

INTRODUCTION

Over the past 60 year of strong motion accelerograph development in seismic area, we have little data for strong

ground motions in near earthquake faults, especially for differential ground motions, because the spacing

between neighbouring accelerograph sites is usually much longer than the wavelengths of seismic waves.

Consequently we know little about the characteristics of differential ground motions such as strains, tilts, and

rotations as well as those of near-field strong ground motions. Dynamic deformations, equivalently, differential

ground motions in near earthquake fault may play a major role in causing earthquake-related ground failure and

damage to such extended structures as pipelines and long-span bridges. In this paper, we will present the

definition of the differential ground motions on free-field ground surface, and then describe numerical examples

to show the characteristics of the differential ground motions as well as those of near-field ground motions. The

differential ground motions and the ground motions in this paper are synthesised using a discrete three fold

Fourier transform of the analytical forms of seismic wave field. They are derived by a stiffness matrices-based

formulation of the physical processes of propagation of the seismic waves generated by a kinematic fault rupture

model buried in horizontally layered media. In consequence, the differential ground motions and the ground

motions in this paper can be synthesised in quite accuracy, because the seismic wave field in our method is

represented as a simple sum of plane waves with the complex amplitudes given by the analytical forms in

frequency wave number domain.

DEFINITION OF DIFFERENTIAL GROUND MOTIONS

We will here summarise the definition and physical meanings of the differential ground motions on free-field

ground surface, within the framework of the linear theory of elasticity. This means that the definition described

in this paper is not applicable and must be redefined for the case where strains and displacements are relatively

large.  For such case, however, the definition in the frameworks of linear theory of elasticity may still be used as

a measure of the degree of the ground failure as well as the degree of the spatial variation of ground motions.

We denote the three displacement components at a position (x, y, z) of a time instant t in the Cartesian coordinate

system by u (x, y, z, t), v  (x, y, z, t), and w (x, y, z, t). Then, the small angle of rotation about axes parallel to x, y,

and z are given as [Chou et al., 1967],
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in which each of these three rotational components is positive if counter-clockwise when viewed from the

positive extension of the axis of rotation toward the origin.

On the free-field ground surface,  the stresses must be zero. Accordingly, such relations must exist on the free-

field ground surface as,
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where λ and µ are Lame’s constants.

Therefore, substituting Eq.(2) into Eq.(1), the expression of the rotational components on free-field ground

surface are given by
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where u, v , and w are the displacements on the free-field ground surface.

Next we will summarise the expressions for the six components of free-field ground surface strains. It is well

known that the longitudinal components of strains are given by
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By taking an average of the longitudinal strains, the dilatational component of strain is obtained as
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The components of pure shear strains in x, and y directions, respectively, are expressed as
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Taking an average of the pure shear strains yields the shear strain on x-y plane which corresponds to the free-

field ground surface,
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In the next paragraphs we will describes the physical meanings of the rotation ωz about z axis and the dilatational

strain Dε   given by Eq(3) and Eq(5), in relation to  such seismic waves as SH and P-SV waves.

For the axis-symmetrical case where the material and structural properties of the earth medium through which

the seismic waves propagate are axis-symmetrical,  the displacements u(x,y,z,t) , v(x,y,z,t), and w(x,y,z,t) are

composed by the following equations,
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where u0(x',z,t)  and w0(x',z,t) are the out-plane wave displacements created by the P and SV waves , and the out-

plane wave displacement is expressed by v0(x',z,t) generated by the SH wave alone. In the above equations, the

direction of the P-SV and SH waves is assumed to be toward x' axis and lie in the same vertical x'-z plane which

is obtained by a rotation with angle θ about the vertical axis . Accordingly, the original coordinates x,y, and z are

related to the rotated new coordinates x',y', and  z by the following equations,

θθ sincos yxx +=′ ,  θθ cossin yxy +=′ ,   zz =′ (9)

Substitution of Eq.(8) into Eq.(3) and Eq.(5) by considering Eq.(9) yields
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It is observed from above equations that the rotation ωz about the vertical axis z on free-field ground surface is

associated with the pure shear strain in the y' direction, which is generated by the SH wave alone, while the

dilatational strain Dε  is the axial strain in the x' direction generetaed  by the P-SV waves. This physical

meanings of ωz and Dε   was applied to the decomposition of the observed seismograms into the SH and P-SV

wave compoments [Sato, 1968].

STIFFNESS MATRICES-BASED FORMULATION OF GROUND MOTIONS

The starting equation is the following stiffness matrix equation for a horizontal layer, which includes an

extended rupturing fault, as shown in Figure 1.

Figure 1:A horizontal layered system including an extended rupturing fault
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where,
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In Eq.(11a), q (z1)= ττ(z1) and  q(z2)= τ τ(z2). u(zj) and ττ(zj)  are the displacement and stress vectors at a depth zj in

frequency wave number domain, and also K(2)
ij is the element stiffness matrix in frequency wave number domain

[Harada et al., 1999]. In Eq.(11b), us(zj) and ττ s(zj) are the displacement and stress vectors at a depth zj, created

by the extended rupturing fault buried in full space. For a half space including the extended rupturing fault, it is

obtained in a similar manner such as,
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where Khalf  is the stiffness matrix for a half space, and ufree(z2) is the free-field surface displacement of the half

space, which is generated by the extended rupturing fault. The closed form expressions for the element stiffness

matrix K(2)
ij , Khalf , us(zj), ττ s(zj) , and  ufree(z2) are presented in the paper [Harada , et al., 1999].

It is well known in structural analysis that the system stiffness matrix equation for a two horizontal layered

media overlying a half space as shown in Figure 1, where an extended rupturing fault is included in the 2nd

layer, can be easily obtained, using a direct superposition technique of the element stiffness matrix given by

Eq.(11), such as,
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By solving the above system equation, the free-field ground surface displacement u(z0)=u(kx,ky,ω) in frequency

wave number domain is obtained. Then the free-field ground surface displacement u(x,y,t) in space time domain

can be computed by the three fold Fourier transform such as,
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where u(x,y,t) is the displacement vector in the space-time domain with components (u(x,y,t), v(x,y,t), w(x,y,t)),
and u(z0)=u(kx, ky, ω) is the displacement vector in the frequency wave number domain with components (u(kx,

ky, ω), v(kx, ky, ω), w (kx, ky, ω)), which is a function of not only the wave numbers kx, and ky in the directions of x,

and y axses, respectively, but also the frequency ω. On the basis of the stiffness matrices formulation, the closed

form analytical expressions of  u(kx, ky, ω) are described for the multiple horizontal earth layers over the half

space media in which a rupturing rectangular fault is buried[Harada et al., 1999].

The above three fold Fourier transform can be computed efficiently by using the discrete FFT (Fast Fourier

Transform) algorithm with the following discretization parameters,
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where ωmax, κxmax and κymax represent the upper cut-off frequency and wave number, | ω |<ωmax,  | κx |<κxmax,

| κy |<kymax, beyond which the complex displacement amplitude u(kx,ky, ω) of plane wave may be assumed to be

zero for either mathematical or physical reasons.

NUMERICAL EXAMPLE OF SYNTHESIS OF NEAR-FIELD GROUND MOTIONS-1966
PARKFIELD EARTHQUAKE GROUND MOTIONS-

We synthesised the station 2 motions by using the fault-medium model of Bouchon (1979) where the source is a

single vertical rectangular strike slip fault with the rupture velocity of 2.2 km/s, and the earth medium consists of

a sedimentary horizontal layer with the thickness of 1.5 km overlying a half space in which the fault is buried.

The detailed fault parameters used in this study are indicated in Table 1.
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(a) Observed transverse ground motion displacement, velocity, and acceleration in frequency up to 2.0 Hz at

station 2 during the 1966 Parkfield earthquake

(b) Synthesized transverse ground motion displacement, velocity, and acceleration in frequency up to 2.0 Hz at

station 2 using the Bouchon source-medium model

(c) Synthesized transverse ground motion displacement,  velocity, and acceleration in frequency up to 2.0 Hz at

station 2 using  the modified Bouchon source-medium model

Figure 2: Comparison of the observed records with the synthesized ground motions from the two source-
medium models
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            Table 1: • @Source parameters   Table 2: • @Discretization parameters
Seismic Moment M0=2.230• ~1017 N¥m Cutoff frequency ƒÖmax(rad/sec)        12.0

                             (2.230 • ~1024dyne¥cm) Cutoff x-wavenumber ƒÈxmax(rad/m) • \4.0• ~10 -3

Rise Time of the Ramp Function ƒÑ=0.3 sec Cutoff‚™-wavenumber ƒÈ‚™max(rad/m) • \4.0• ~10-3

Length of Fault L=8500 m NƒÖ• @• @• @• @• @• @• @• @• @• @• @• @• @• @• @   256

Width of Fault W=8500m NƒÈ• @• @• @• @• @• @• @• @• @• @• @• @• @• @• @• @ 256

Velocity of Rupture vr=2200m/sec ƒ¢t (sec)                             0.262

Depth of Upper Edge of Fault zso= 0m ƒ¢x (m)                              785

Strike Angle ƒÓ= 0•‹ • @• @• @• @• @ƒ¢y (m)                              785

Dip Angle ƒÂ=90•‹

Slip Angle ƒÉ= 0•‹

Slip Type                       Type 1
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Figure 3: Near-field ground surface and projected fault location used in computation

Figure 4:Spatial variation of maximum values of synthesised 3 components of ground velocities and of 9
components of differential ground motions
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Figure 5:Time histories of  synthesised 3 components of ground velocities  and of 3 components of
rotational ground motions at nine sites indicated by circles in Figure 3
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The discretization parameters used in this synthesis are also indicated in Table 2. The earth medium properties

necessary for the synthesis are: for a sedimentary layer, the thickness = 1.5 km, the S wave speed =1.6 km/s, the

P wave speed =2.8 km/s, the density = 2.3 t/m
3
, and the Q value =150, for the half space, the S wave speed =3.5

km/s, the P wave speed =6.0 km/s, the density = 2.8 t/m
3
, and the Q value =400.

For the above described Bouchon model, the synthesised ground motion  displacement, velocity, and

acceleration time histories in frequency up to 2 Hz are shown in Figure 2(b), by comparing the observed ground

motion time histories in frequency up to 2 Hz. In this synthesis the average slip displacement D is assumed to be

50 cm. It is observed from Figure 2(a) and (b) that the detailed wave forms, especially for the velocity and

acceleration time histories, are different from the  observed records, although gross wave forms are similar to the

observed records.

To improve such above inconsistency of detail wave forms, we investigated the effect of the parameters on the

wave forms. Finally we have obtained the relatively nice results in wave forms as shown in Figure2(c) by

changing only the values of thickness of sedimentary layer and fault rupture speed from the original values of 1.5

km and 2.2 km/s to 1.0 km and 2.75 km/s.  Such values may be within the range of available possibility.

NUMERICAL EXAMPLE OF SYNTHESIS OF  DIFFRENTIAL DROUND MOTIONS

By using the fault-medium model of Bouchon (1979) which is shown in previous chapter 4, we synthesised nine

components of differential ground motions defined in chapter 2. Figure 3 shows the free-field ground surface

area  and the projection of the vertical strike fault to the ground surface used in this analysis.

Figure 4 shows the spatial variation of the maximum values of three components  of ground velocities and of nine

components of differential ground motions on the near-field area as shown in Figure 3. It is observed from

Figure 3 that the differential motions( xwxvxu ∂∂∂∂∂∂ /,/,/ ) may be obtained from the ground velocities,

dividing them by the fault rupture velocity (in this case 2.2km/s). It is also observed that the wave field may be

controlled by the SH wave (Love wave) because the maximum value of ωz is quite larger than that of εD (see

chapter 2). Figure 5 shows the time histories of three components  of ground velocities and of 3 rotational

components ωx, ωy , ωz at nine sites near the fault end area as indicated by circles in Figure 3. It is observed from

Figure 5 that the larger amplitude pulse waves appear in the ground velocities transeverse to the fault.

The characteristics of the differential ground motions as well as ground motions shown in Figures 4 and 5 may

influence on the ground failure and the damage to the extended strucures such as pipelines and long-span

bridges. Untill now, we have little data for strong ground motions in near earthquake faults, especially for

differential ground motions. Accordingly, the effects of them on the structural responses have not been

sufficiently investigated so far. The study on such relations between the structural damages and the ground

motions, especially the differential ground motions should be necessary.
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