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SUMMARY

Responses of linear and nonlinear systems are correlated with basic characteristics of earthquake
motion, which are supposed to be given as the amplitudes and the phases of Fourier spectrum. By
assuming the phase difference spectrum in Fourier transform a normal probability curve, the
standard deviation of which correlates to the duration of the earthquake, expected value of time-
history response to earthquake can be formulated. The effect of damping on the linear response
spectrum can be obtained based on this formula. Nonlinear displacement responses to earthquakes
can be simulated based on instantaneous balance of input energy and dissipated energy. The input
energy can be approximated from linear response spectrum, whereas the energy dissipation
capacity and the equivalent period of vibration depend on the path of the hysteresis relations. The
peak displacement ratios, which are the ratios of maximum displacement to previous peak
displacement during nonlinear response, are defined to represent the hysteretic path. The ratios can
also be related to the phase difference spectrum. Estimation of the nonlinear response from an
equivalent linear system in capacity-demand diagram can be improved using the peak
displacement ratios approximated from the duration of motion.

INTRODUCTION

In displacement-based seismic design, the design criterion is to be that the response of structure shall be less than
the limit state, given in terms of story drift or member deformation, such as ultimate deformation capacity of
yielding members. To develop the rational design criterion, general correlation must be derived between the
inelastic response and characteristics of design earthquake. Here, the basic characteristics of the earthquake are
supposed to be given as the amplitudes and the phases of Fourier spectrum. Fourier amplitudes correspond to the
total input energy to the undamped system in terms of velocity. On the other hand, the phase angles have been
assumed in practical design as random or peculiar to the recorded motion, the effect of which on the response
has not yet been studied enough.

The purpose of the study is to analyze the time-history responses based on the characteristics of the earthquake
motion. A mathematical formula is given to calculate the expected value of time-history response of the linear
damped system under the earthquake motion characterized as above. The results may be useful as the theoretical
backgrounds for the effect of damping on the response spectrum, or the peak displacement ratios, which can be
used for a rational estimation of nonlinear responses.

CHRACTERISTICS OF INPUT EARTHQUAKE MOTIONS

Earthquake motions used in this study are listed in Table 1. Non-stationary waves can be expressed using the
Fourier transform as Fourier amplitudes and phase difference spectrum. It has been pointed out theoretically that
the phase difference spectrum is in good correlation with the time-history of the acceleration waveform.
Therefore, the deviation of the spectrum may be used to express the duration of the earthquake. Here, the
duration time t0 is defined from 5% to 95% of the time history of the square of the acceleration, called frequency
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ensemble work, which corresponds to the work done to the system integrated in the domain of frequency. The
duration times calculated for the earthquakes are shown in Table 1, with moment magnitudes of the source for
the earthquakes after 1981 or the surface wave magnitudes before 1980. The time-history accelerations are
shown in Figure 1.

The relations between the duration and the magnitudes were plotted in Figure 2. Simple empirical equations for
the relations [Dobry, 1978][Trifunac, 1975] gives fair approximates for the defined duration. The Fourier

Table  1:  List of Earthquake Motions.

Abbreviation Earthquake Site Component Date of occurrence Magnitude Amax(gal) Duration(s)

elcns Imperial valley earthquake El Centro NS May 18,1940 7.1 341.7 24.4

taftse69 California earthquake Kern county S69E Jul 21,1952 7.8 175.9 28.9

hacew Tokachi-Oki Hachinihe Harbor EW May 16,1968 8.2 182.9 24.4

pacs74w San Fernando earthquake Pacoima Dam S74W Feb 9,1971 6.6 1054. 7.28

tohns Miyagi-ken-Oki Tohoku University NS Jun 12,1978 7.6 258.2 19.5

sctew Mexico SCT1 EW Sep 19,1985 8.0 167.9 38.9

ksrew Kushiro-Oki Kushiro Meteorological Observatory EW Jan 15,1993 7.6 711.4 19.3

sylew Northrige earthquake Sylmar county hosp. EW Jan 17,1994 6.7 826.7 5.34

kobns Hyogo-ken-Nambu Kobe Meteorological Obsevatory NS Jan 17,1995 6.9 820.6 8.38

fkin30w Hyogo-ken-Nambu Ohsaka Gas Fukiai Station N30W Jan 17,1995 6.9 802.0 6.76

newrc1 NewRC Artificial -- -- -- -- 394.6 29.6

newrc2 NewRC Artificial -- -- -- -- 407.2 78.5

angles of the two adjacent components in the Fourier decomposition, is idealized as a normal distribution curve.
Figure 3 shows examples of the correlation between the phase difference spectrum and the acceleration
amplitude has been investigated so far, whereas the effect of the phase on the response has not been studied
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much. In the following study, the phase different spectrum, which is defined as the difference between the phase
waveform for fkin30w and newrc1. The normal distributions fitted by the least square method are also shown in
the figure. The standard deviation of the normal distribution is larger for the earthquake with the longer duration.
The distribution of the phase difference spectrum has been verified theoretically to be similar to the envelope
shape of the time-history of the original acceleration wave[Ohsaki, 1978]. In other words, the standard deviation
of the phase difference spectrum corresponds to the duration of the earthquake motion. As shown in Figure 4, the
duration corresponds to the four times of the standard deviation of the idealized normal distribution for the phase
difference spectrum.

EXPECTATION OF  RESPONSE TIME-HYSTORY FROM PHASE DIFFERENCE SPECTRUM

Expected value of the responses of the linear system with viscous damping was formulated as the superposition
of the theoretical transient responses to the decomposed Fourier sinusoidal waves as follows. Earthquake
acceleration is decomposed into the Fourier formula as the sum of cosine waves of Nf=N/2+1 as equation(1).
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It is assumed here that the Fourier amplitudes of the acceleration ak are invariant and unity to investigate only the
effect of phase difference spectrum. Also in the range out of 0 through 2π, the density spectrum is assumed to be
negligibly small. Then the input acceleration of k-th component is expressed as equation (3).
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Therefore, the transient response of the system with fundamental frequency ω and damping coefficient h to
above component can be formulated as equation (4):

{ }[ ]kithithithkpt
k eeCeCekeiAhty φωωωωω )(),(

22 1
2

1
10

−−−−∆ +∆ℜ= (4)

where, 
2222

22

0
)2()(

)2(

kk

kk

ih

ih
A

ωωωω
ωωωω

+
−−= , ( )2

21 1
12

1
hih

h
C kk −−−

−
= ωωω , ( )2

22 1
12

1
hih

h
C kk −+−

−
= ωωω , h

is viscous damping coefficient of the system, ω  is fundamental frequancy of the system. The response to the
acceleration )(0 ty  can be expressed as equation (5) as the sum of all the components from 1st to Nf-th:
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Expected value of the average of the time-history response considering desnsity function of the phase spectrum
can be expressed as equation (6):
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And, the variance of the response is in the following equation(7), from which the envelope curve of the response
can be derived as its square root:
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Calculated envelope curves for the systems with damping coefficients of 5, 10, 15 and 20 percent of critical are
shown in Figure 5. The values of the standard deviation of the phase difference spectrum are 0.34π and 1.01π for
Fukiai and NewRC1 respectively.

EFFECT OF DAMPING ON RESPONSE SPECTRUM

Fourier amplitude spectrum is similar to the velocity response spectrum without damping, which is also
correlated to the total input energy spectrum in terms of velocity. In case of the response of the system with
higher damping coefficient, the total input energy is invariant but smoothed whereas the velocity response is
smaller. The effect of damping on the response has been approximated empirically in practice and research, so
that the basic characteristics, for example the phase
spectrum, are not reflected in the approximation.
However, the effect of damping on the response is
apparently different, for example, in the cases of far-
field and near-field earthquakes. The relationship
between the fundamental frequency of the system and
the duration of the earthquake need be investigated.

The effect of damping can be formulated based on the
power spectrum if the input wave is assumed as a
white noise, which is basically determined by the
duration of the input wave. Expected constant stable
response to the white noise of the duration t1 is
expressed as equation (8), from which the effect of
damping on the response is formulated as equation
(9):
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where, σy
2 : expected square average of response

displacement, S0 : power spectrum density, t1 :
duration of the white noise, h : damping coefficient,
ω0 : fundamental frequency. The duration of
earthquake t0  must be converted into the equivalent
duration in above formula. The equivalent duration t1

for above equation (9) is derived as t1=t0/4
empirically so that the reduction from the equation (9)
roughly agrees with the calculated responses of the
damped system. Examples are shown in Figure 6.

Although above formula is simple and practical, the
equivalent duration was determined empirically
without theoretical background. The time-history
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response derived from the phase difference spectrum in the previous section can be used to correlate the effect of
damping with the duration of the earthquake. The effect of damping can be formulated as equation (10), only by
idealizing the phase difference spectrum as a normal distribution curve:
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The effect of damping on the response derived from above formula as response expectations is shown in Figure
7 for Fukiai and NewRC motions. As shown in the figure, good estimates can be derived theoretically based on
the phase difference spectrum or the duration of the earthquake. The reduction of response estimated from above
equation is apparently greater than the reduction estimated based on white noise (equation(9)) assuming the
equivalent duration of t0/4. Therefore, the equivalent duration longer than t0/4 may be assumed to fit above
theory. The response under the actual earthquake is scattering because the phase difference spectrum is not
normal distribution and Fourier amplitude is not constant through frequency. The method gives theoretical and
smoothed expectation, although it takes a lot of computation time, which may be a theoretical background to the
equivalent duration empirically determined based on the white noise.

PEAK DISPLACEMENT RATIO

Input and dissipated energy in the hysteretic damping system is balanced during the response to earthquake
motions. In the past studies[Nakamura and Kabeyasawa, 1996], maximum response displacement of hysteretic
damping system can fairly be correlated to the instantaneous input energy during the unit time in proportion to
the equivalent period of inelastic system. Input energy can be evaluated relatively stable and constant, although it
depends on the equivalent period. Also, the input energy to the inelastic system can be correlated to the linear
response spectrum. On the other hand, the energy dissipation capacity depends on the hysteretic relations of the
system, especially at the latest moment when the maximum displacement occurs.

For example, it is clearly different in the cases that the amplitude increases symmetrically and gradually with
cyclic vibration and that the inelastic displacement increases rapidly in one direction. Figure 8 shows the
hysteretic response of an inelastic system under NewRC and Fukiai motions. As shown in Figure 8(a) under
Fukiai motion, i.e., a near-field motion, the displacement response increases rapidly up to maximum
displacement in one cycle, whereas under NewRC motion in Figure 8(b), the response gradually increases with
cyclic excitations. To differentiate these types of responses, the index of peak displacement ratio is proposed
which is defined as the ratio of the peak displacement in the previous half- or one-cycle to the maximum
displacement as follows:

maxmin2/1 / DD=γ (11)

max1 / DDpre=γ

where, Dmax: maximum response displacement, Dmin: half-cycle previous peak displacement in the opposite
direction, Dpre: one-cycle previous peak displacement in the same direction

Figure 9 shows the peak displacement ratios γ1�γ1/2, calculated from responses of various nonlinear systems
under NewRC and Fukiai motions. The ratios are plotted in relation to the equivalent period in horizontal axis,
which is calculated from the secant stiffness from the origin to the maximum response displacement. The
hysteresis rule of the systems is Takeda model, the yield strength of which is selected under each motion so that
the nonlinear maximum response displacement of the systems attains the ductility factor of 2, 4, or 9. The
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peak displacement ratios are apparently different between the
responses under the two motions. They depends on the
equivalent period of the system: the ratios are higher under
NewRC motion with long duration and lower under Fukiai
motion with short duration, which reduce with the elongation
of the equivalent period.

The peak displacement ratios can also be derived theoretically
from the expectations of time-history response. The ratios
calculated from the expectations are plotted in Figure 9 with
dotted lines, which conform to the observed relations that the ratios becomes lower with the elongation of the
equivalent period and under the motion with short duration. The method gives a theoretical background for the
peak displacement ratios. However, it requires too heavy calculations. Therefore, the ratios are formulated by
simplifying the time-history of the input energy, as shown in Figure 10, using the duration, on the assumption
that:

(1) Instantaneous input energy is the maximum at the middle point of the defined duration of motion.
(2) The maximum instantaneous energy is four times the average energy (two times in terms of velocity), which
is defined as the total energy divided by the duration of the motion[Nakamura and Kabeyasawa, 1998].
(3) The maximum displacement occurs at the maximum instantaneous energy.
(4) The peak displacement ratios is in proportion to the maximum input energy, from which γ is given by the
following equation, using the duration t0 and the equivalent period Te,
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where, t0 is the duration of motion, Te is equivalent period

ESTIMATION OF NONLINEAR DISPLACEMENT RESPONSE

To estimate nonlinear and dynamic response to earthquake motions, a simple equivalent linearization is practical
using pushover analysis and capacity-demand diagram. As shown in Figure 11, equivalent load-deformation
curve of reduced single-degree-of-freedom system from the pushover analysis is plotted on SA-SD diagram,
namely acceleration-displacement diagram. Then, the nonlinear dynamic response can be estimated to be the
crossing point of the capacity curve and the demand curve, where the substitute damping of the hysteretic system
is equal to that of the demand curve, i.e., the elastic response spectrum of the motion. It should be noted that the
equivalent fundamental period of the hysteretic system is simply and implicitly assumed to correspond to the
secant stiffness starting from the origin to the estimated maximum inelastic response.

The accuracy of above method diagram is investigated for the responses of the nonlinear systems with hysteresis
rules of Takeda-model, Takeda-Slip model and Bilinear model as shown in Figure 12. The marks of rectangle,
triangle or circle are the responses calculated from inelastic system, which attain ductility levels of 2, 4, and 9,
which are plotted at the corresponding strength(SA) and response displacement(SD). If the estimation method is
appropriate, these responses are plotted on the demand curves with the corresponding damping coefficient. A fair
correlation is observed only in the case of Takeda model under the artificial design motion of NewRC as shown
in Figure 12 (a), in which stationary responses are dominant. In the other cases under recorded motions,

Figure 9:  Peak displacement ratios
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the estimation is much worse in general, an example of which is shown in Figure 12 (b) under Fukiai Staion
record (N30W) during 1995 Hyogoken-Nanbu Earthquake. The estimated responses by capacity-demand
diagram as the crossing points are compared with the calculated under NewRC and Fukiai motions, as shown in
Figure 13. The accuracy is not satisfactory. For example, when the inelastic displacement increases rapidly under
near-field earthquake motion, the estimation could be smaller than the calculated.

If the displacement increases symmetrically and gradually with cyclic vibration, then the hysteretic damping in
stationary behavior and the secant stiffness to the maximum displacement can be assumed in the estimation. On
the other hand, if the inelastic displacement increase rapidly in one direction under relatively short earthquake
motion, in other words, the peak displacement ratio is small, then the equivalent fundamental period should be
assumed shorter and the energy dissipation capacity should be corrected considering the hysteresis path. In such
case, the equivalent stiffness is defined here from the half-cycle previous peak to the maximum peak
displacement, as shown in Figure 14. Equivalent viscous damping factor is also defined as the hysteretic
damping for the half cycle as shown in the figure. The capacity-demand diagram method was modified using
above equivalent period and damping on the assumption that the peak displacement ratio was given by equation
(12) based on the duration of the earthquake. The estimated displacement and maximum response displacement
under NewRC and Fukiai motion are shown in Figure 15, which give better estimation than those by the simple
capacity-demand diagram method. the estimation is much worse in general, an example of which is shown in
Figure 12 (b) under Fukiai Staion record (N30W) during 1995 Hyogoken-Nanbu Earthquake. The estimated
responses by capacity-demand diagram method.

CONCLUSIONS

Expected value of time-history response can be formulated by assuming the phase difference spectrum in Fourier
transform of earthquake waves as a normal probability curve. The effect of damping on the linear response
spectrum can be obtained based on this formula, which should be correlated to the duration of earthquake in
demand spectrum. The peak displacement ratios, which are the ratio of maximum displacement to previous peak
displacement during nonlinear response, can also be calculated theoretically based on above formula from the
phase difference spectrum. Estimation of the nonlinear response from an equivalent linear system in capacity-
demand diagram can be improved using the peak displacement ratios approximated from the duration of motion.
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Figure 14:  Modified capacity-demand
diagram method using peak displacement
ratios

Figure 15:  Modified estimation with
calculated nonlinear responses
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