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SEISMIC RESPONSE ANALYSIS FOR TELECOMMUNICATION TOWERS BUILT
ON THE BUILDING

K KANAZAWA1 And  K HIRATA2

SUMMARY

The seismic response spectrum method for a secondary system is developed, to consider dynamic
interactions with the primary system. The proposed seismic response evaluation method is divided
into two steps. The first step is to transform the seismic input such as floor response spectra values
at the period of the secondary system from the specified design spectra at the ground. In this step,
we present the modal synthesis method in which the modal properties of the combined system are
determined from the modal characteristics of the primary system and the equivalent single-degree-
of freedom oscillators of the secondary system. Furthermore, the method considers as transient
effect of the primary system on the response of the secondary system. On the other hand, the
second step is the seismic response calculation of the secondary system using the relative
acceleration response spectra values. To consider rigid body mode and closed spaced modes, the
present modal combination rule includes two kinds of correlation coefficients between the input
acceleration and relative accelerations and among the relative accelerations. To illustrate the
present method, seismic response analysis of a tower-building model is carried out, and the
accuracy of the method is discussed.

INTRODUCTION

For the seismic design of the secondary system, such as telecommunication towers or equipment mounted on the
building (the primary system), response spectrum method is often used. In this method, at the first step, it is
common to evaluate the seismic floor response spectra (FRSs) from the specified design spectra of the ground
motion. The FRSs are the maximum response series of single-degree-of-freedom (S-DOF) oscillators which
have different damping ratios and natural frequencies and which is assumed to be mounted on the floor of the
primary system. From the generated FRSs, at the second step, the responses of secondary system are evaluated
by means of some modal combination rules. In order to obtain seismic response of the secondary system
accurately, the FRSs should be evaluated exactly at the first step, and the total response should be combined
from each modal response reasonably at the second step. In these points of views, many methods were developed
as follows.

In the evaluation of FRSs, the compatible power spectrum density function (PSDF) is calculated from the design
spectra, then the PSDF of the floor where the secondary system is attached is converted from the ground PSDF
and the modal properties of the combined system, finally the FRSs is evaluated from the floor PSDF. The
compatible method between PSDF and design spectra (or between PSDF and FRSs) was proposed by Kaul
(1978) or Unruh and Kana (1981). Their methods are based on the stationary process, and also consider infinite
earthquake duration by adjustments to damping factor of S-DOF oscillators [Routhenbluth, 1969]. In turn, in the
PSDF transformation from ground to floor, the combined modal property should be evaluated accurately. For
example, when the weight of secondary system is relatively large, the dynamic interaction between primary
andsecondary system is significant. From this point of view, many modal synthesis methods were proposed,
where the modal properties of combined system are calculated from primary and secondary one individually e.g.
[Singh and Suarez, 1986,1987]. As mentioned above, in the previous studies, in the evaluation of FRSs dynamic
interaction between primary and secondary system is considered perfectly, however, non-stationary or transient
response effects are neglected.
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Theoretically, the assumption of stationary response gives overestimated result compared with the real response,
and it is significant when the natural period of combined system is long, or when the earthquake duration is
small.

On the other hand, in the modal combination rule of response, the square root of the sum of the squares (SRSS)
rule [Goodman et al., 1953] is well known and is still used quite widely, but is not adequate in the case of the
response with closely spaced frequencies. The double sum (DSUM) rule [Rosenblueth, 1969] and the complete
quadratic combination (CQC) rule [Der Kiureghian, 1981] give reasonable estimation even when each mode is
closed, but is not adequate when the input motion is a narrow-band process or when the rigid body mode is
influential. To solve these problems, Hadjian (1981) and Singh and Mehta (1983) proposed alternative rules
using relative acceleration response spectra and maximum input acceleration (or ZPA; zero period acceleration).
Also, A.K.Gupta et.al.(1984) proposed a rule in which total responses are synthesized from the rigid body mode
and the damped periodic mode. Der Kiureghian and Nakamura (1993) improved the original CQC rule, to avoid
the truncation error. In the case of the secondary system, the input motion is the response at the floor of the
primary system, therefore, it generally becomes a narrow-band process.

In this paper, a seismic response spectrum method for a secondary system is proposed, considered as a dynamic
interaction problem with a primary system. Firstly, we present a method to predict the maximum response for the
primary-secondary system (combined system), considering infinite earthquake duration or transient response. In
this method, the maximum absolute or relative acceleration responses of the combined system can be obtained,
under the assumption of the stationary ground motion. Secondly, using these values, the modal combination rule
for the maximum responses of the secondary system is presented. This method is based on the modal
superposition theory and is also used for maximum values of the relative acceleration and input acceleration. The
seismic analysis for the secondary system in this study is shown in Fig.1.

MAXIMUM RESPONSE OF THE COMBINED SYSYTEM

Eigenvalues Analysis

Exact formulation of the eigenvalue problem are shown by Singh and Suares (1987), for a multi-degree of
freedom (M-DOF) primary system with a S-DOF secondary system. In this paper, at first, this formulation is
extended to a M-DOF primary system with a M-DOF secondary system.

When N p  SDOF oscillators equivalent to a secondary system are attached to the M-DOF primary system

(number of freedom: Ns ) and the combined system is subject to a ground motion ( )x tg , the equations of

motion become
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or,

Dz Ez z+ = − G  (2)
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in which M c , Cc  and K c  are the mass, damping and stiffness matrix of the combined system, the matrices of

subscript p  are those of the primary system, ω j
s , hj

s  and mj
s  are the natural frequency, damping ratio and

modal mass of the j -th mode of the secondary system. ��� denotes a diagonal matrix, and a superposed T

denotes a transpose. And, the vector v j  is defined as follows if the j -th mode oscillator is assumed to attach to

node k  of the primary system:

v j
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 (4)

The magnitude of modal mass mj
s  is given as,
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in which Mi
s  is a mass of node i , β j

s  is the j -th participation factor and φij
s  are the mode shape values of the

secondary system, respectively.

The eigenvalue equation of equation (1) becomes,
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To obtain the modal properties of the combined system, we need to solve equation (6). However, there are two
problems, solving this eigenvalue equation. One is the numerical inaccuracy which could occur in the solution of
equation (6) due to ill-conditioning of the matrices caused by the lightness of the secondary system. And the
other is the number of the order in equation (6) is two times as large as the number of degree of freedoms of the
primary and secondary system, therefore, the computational cost to solve equation (6) is relatively large. In
practice, the lower modes of the combined system which affect to the response can be synthesized from the first
few modes of the primary and secondary systems individually. Thus, to avoid these difficulties, we can introduce
the following transformation in equation (6):
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in which ΦΦΦΦp  is the mode matrix of the primary system in which is arranged the lower modes (number of mode:

mp ), and which is normalized by ΦΦΦΦ ΦΦΦΦp p
TM Ip =  ( I  is a unit matrix). Also, the number of oscillators as the

secondary system is considered as the first lower mode (number of mode: ms ). In practice, mp  and ms  can be

selected to include in the range of frequency interest.

Substituting equation (7) in equation (6), premultiplying by TT and utilizing equation (4) and the orthonormal
properties of ΦΦΦΦp , we obtain
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Solving the complex eigen equation in equation (8), we can obtain the eigenvaluses pj  and eigen-vectors ΦΦΦΦj
c ,

ΦΦΦΦj
c  of the combined system. That is, the modal properties of the combined system are synthesized from given

primary and secondary one individually.

The Moment Functions of Absolute and Relative Acceleration Responses

In section 3, a modal combination rule for the response of the secondary system is described, in which two kind
of maximum response values are used: those are the maximum absolute acceleration of the floor where the
secondary system is attached, and the maximum relative acceleration of secondary system. To evaluate these
maximum values, we will derive the moment functions of the absolute and relative acceleration in this
subsection. Using these moment functions, maximum acceleration responses are evaluated by means of a method
shown in the next subsection.

The equation of motion (1) can be decoupled with the help of the standard transformation as,

( ) ( )
x

x
T









= =ΦΦΦΦ ξξξξ ΦΦΦΦ ξξξξc ct t  (11)

in which ξξξξ  is the vector of the principal coordinates. Substituting equation (11) into equation (1) and

premultiplying by ΦΦΦΦc
T , we obtain 2( )m mp s+  decoupled equations
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in which Γi  is the component vector of the participation factor of the combined system.

It can be shown that the absolute acceleration response subjected to the ground motion at node k  of the
combined system is given as follows:
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and the first derivative of the response with respect to time ak  is given as follows:
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where
α βi i i i i ie d d= =, Γ  (16)

in which m  is the total number of the mode of the combined system ( )m m mp s= + .

The moment function of the absolute acceleration response will be presented below. Now, using the parameters
in equation (16), the unit impulse response function of ξi  in equation (12) can be obtained as follows:
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By means of equations (14) or (15), (17), assuming the ground motion xg  as a stationary process. The first three
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in which Sg ( )ω  is the PSDF of xg , and σa t2 ( ) , σ aa t( )  and σ ( )a t2  are the 0-th, 1-st and 2-nd moment

functions of the absolute acceleration response at node k  of the combined system, respectively. The three
moment functions are dependent of time t , namely, the absolute response is the non-stationary process as
transient response. Practically, integrals in equations (18) through (20) are calculated numerically in the range of
frequency of interest.

The first three moments of the relative acceleration responses also can be derived in the same way as the above
formulations. When a modal mass of secondary system as node  is attached to the floor of primary system as

node k  in the combined system, the relative acceleration response a k
r  of node  in terms of node k  is
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The results of the first three moment functions are obtained by replacing φki
c to “φ φi

c
ki
c− ” in equations (18)

through (20), respectively.

Prediction of Maximum Response

The first three moment functions of the transient responses are formulated in the previous subsection. In this
subsection, the prediction method of the maximum response of the non-stationary process is presented.

In the random vibration theory, a up and down-crossings of response level as a t b( ) = ±  occur in accordance
with Poisson’s process. For a non-stationary response, if the response a t( )  is a symmetric and zero-mean

random process, the distribution of amax can be written as follows [Amin and Gungor,1971]
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in which td  is the duration, pe  is the exceedence probability and v tb
+ ( )  is an up-crossing rate. The up-crossing

rate v tb
+ ( )  can be calculated from joint density function of response and its derivative at time t  as follows

[Amin and Gungor, 1971]:
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in which ρaa  is the correlation coefficient for a t( )  and its derivative at time t .

In the preceding subsection, σa
2 , σ aa  and σa

2  are represented in equations (18) through (20), and these

functions must be evaluated numerically. Thus, substituting equation (25) into equation (23), the up-crossing
lebels b  as the given exceedance probability pe  cannot be obtained as a closed-form. We should, therefore,

solve the nonlinear equation at b , as follows:
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A prediction of the maximum response is b , when g b( )  equals to 0 as the given pe . Meanwhile, the authors

solved this nonlinear equation by means of the Newton-Raphson scheme in the later examples.

MODAL COMBINATION RULE

Based on the modal superposition theory, we propose a modal combination rule, as follows:
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in which R  is a total response, Ri  and Rj  are the i -th and the j -th modal responses calculated from relative

acceleration spectra, R0  is a rigid response calculated from the maximum input acceleration. ijε  is a modal

correlation coefficient between the i -th and the j -th relative modal responses, and δ0 j  is a modal correlation

coefficient between the j -th relative modal response and the input acceleration. These modal correlation

coefficients are defined as follows:
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in which σ i t2 ( )  and σ j t2 ( )  are the moment functions of relative acceleration response, and σ0
2 ( )t  is the

moment function of input acceleration (or acceleration response at the floor the secondary system attached).
These functions are obtained in section 2. Also, in the same way of section 2, σ ij  and 

ojσ  can be obtained.

ILLUSTRATIVE EXAPLES

The numerical examples are presented for an existing telecommunication tower as a secondary system attached
to the SDOF primary system shown in Fig.2. The tower is modeled as a three-dimensional symmetrical truss
structure with linear members, and the first three translational undamped natural periods are 0.61, 0.17 and 0.11
second. To consider various design conditions, natural periods of the primary system are set 0.15, 0.31, 0.61,
1.22 and 2.5 second as parameters corresponding to the natural period rates of the primary to secondary system
(Tp/Ts) to 1/4, 1/2, 1/1, 2/1 and 4/1. Mass rate of the primary to secondary system is fixed to 100, and damping
ratios of the primary and secondary system with respect to all modes are set to 0.05 and 0.02, respectively.

To evaluate applicability of the proposed approach, the results are compared with the time history analyses of the
combined system. The design spectrum for the proposed method and a sample of artificial earthquakes are
shown as Figs. 3 and 4. The effective duration of earthquakes td  is set to 8.2 second from the Husid plot

[A.K.Gupta, 1990], in which the rate of strong motion contribution is defined as 90%. Also, the Monte Carl
simulation (MCS) of time history analyses were carried out using 100 artificial earthquake motion, to evaluate
the accuracy of the proposed method.

In the first step of the proposed method, the FRSs for secondary systems are evaluated from the specified design
spectra, the effective duration of the ground motion and the primary and secondary eigen properties. In the below
examples, the exceedance probability pe  set to 0.15 and the effective duration td  were fixed through the

analyses. Fig.5 shows the 0-th moment functions of building response normalized by the asymptote, calculated
in equation (18). It is clear that the asymptotic level is reached much more slowly in the primary system with
larger natural period, especially in the case of Tb/Tt=4/1 the response of building dose not reached to stationary
in the duration. Table 1 shows the maximum acceleration of input to secondary system (that is the maximum
absolute acceleration response of the primary system) and the 1-st and 2-nd relative acceleration response of
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secondary system, and are the comparison of the results by
the proposed method with those by method assuming
stationary response and MCS. The stationary method is used
the compatible response/power spectrum transformation
proposed by Unruh and Kana (1981) and the stationary
transfer function of the combined system. The results of the
proposed method show good agreement with the average of
MCS except the 1-st and 2-nd relative accelerations in
Tp/Ts=1/1 and 1/4. Especially, for the maximum input
acceleration to secondary systems, the accuracy of the
proposed method is higher than that of the stationary method.
Exception occurs in the case in which the modal frequency
between the secondary and primary system is close, and in
this case the proposed method gives conservative results.

In the second step, the responses of the secondary system are
evaluated from the input acceleration for the first step. Figs.4
and 5 show the maximum acceleration response and axial
stress of brace members of the tower calculated in equations
(28) through (30). To evaluate the efficiency of the modal
correlation coefficients, the results of the modal combination
rules without ijε  and without δ0 j  are also described. In

Tp/Ts=4/1, 2/1 and 1/2, the responses obtained by the
proposed method agree well with the one of MCS. But, in the
case of Tp/Ts=1/1 and 1/4, the proposed method gives
conservative results of MCS. The main reason of these no
agreement seems to be overestimation of FRSs at first step.
On the other hand, as concerns the modal correlation, as
shown in Figs.4 and 5 (especially in the case of Tb/Ts=1/2 or
2/1), evaluations of the total response with all terms agree
well with those of MCS, however, the evaluations without
δ0 j  gives erroneous results. Thus the coefficient δ0 j is

effective to improve the accuracy of evaluated total response.
In turn, the coefficient ijε  is not evaluated in the example because the closed modes of the tower do not exist.

But, the coefficients ijε  become much effective in the case of the system with closed space modes [Wilson, et

al., 1981].

CONCLUSIONS

Seismic response spectrum analysis for secondary systems is presented, which is divided into two steps. The first
step is to be evaluated seismic input as FRSs for secondary systems. Using the proposed method, one can obtain

Fig 2. A Tower-Building Model Fig 3. The Design Spectra
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Fig 4. A Sample of Artificical Earthquakes

Fig 5. The 0-th Moment Functions of Building

Response ( Normalized by Asymptote)
TABLE 1. CALCULATED FRS
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1/4
1/2
1/1
2/1
4/1

Time [sec]

Tb/Tt

σ a2 (t
)/

σ a2 ( 
  )8

Tp/Ts*)

Proposed Stationary Time Analysis**)
1/4 179 187 170/179/188
1/2 246 272 230/246/262
1/1 200 247 186/204/223
2/1 106 145 93/105/120
4/1 52 90 46/53/62

Tp/Ts

Proposed Stationary Time Analysis**)
1/4 410 375 343/397/459
1/2 554 533 490/565/652
1/1 1926 1684 1242/1565/1972
2/1 116 108 96/113/132
4/1 24 22 19/23/27

Tp/Ts

Proposed Stationary Time Analysis**)
1/4 1431 1280 951/1174/1452
1/2 146 143 127/145/167
1/1 28 29 27/31/35
2/1 6.6 6.4 6.2/7.2/8.3
4/1 2.2 2.0 1.9/2.2/2.6

*) The period rate of primary to secondary system

**) mean-ƒÐ /mean/mean+ƒÐ

The 1st relative acceleration[gal]

The 2nd relative acceleration[gal]

Input acceleration[gal]
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the maximum acceleration of the combined system as seismic input for secondary system, considering the
infinite earthquake duration or the transient response under the stationary ground motion. The second step

consists of the modal combination rule to evaluate maximum responses of secondary systems from seismic input
given by the first method. The proposed rule is used for the evaluation of the relative modal accelerations and the
input acceleration, and two kinds of correlation are considered: one among the relative modal responses and one
between the relative modal response and input acceleration. To demonstrate the proposed methods, the authors
applied the proposed method to a telecommunication tower built on the buildings. The results show that the
numerical solution by the proposed methods is similar to the results of Monte Calro simulation (MCS) except the
case in which the modal frequency between the secondary and primary system is close. In the exception case, the
method gives conservative results. As shown in results, the correlation coefficient between the relative response
and input acceleration is effective to evaluate total response of secondary system accurately.

REFERENCES

Amin, M. and I. Gungor (1971): Random vibration in seismic analysis-An evaluation, Proc. ASCE Natl meeting structural
Engineering, MD, 19-23.
Gupta, A. K. (1990): Response Spectrum Method, Blackwell Scientific publications.
Hadjian, A. H. (1981): Seismic response of structures by the response spectrum method, Nuclear Engineering and Design,
66, pp.179-201.
Kaul, M. K. (1978): Stochastic characterization of earthquakes through their response spectrum, Earthquake Engineering and
Structural Dynamics, Vol.6, pp.497-509.
Der Kiureghian, A. (1981): A response spectrum method for random vibration analysis of MDF systems, Earthquake
Engineering and Structural Dynamics, Vol.9, pp.419-435.
Der Kiureghian, A. and Y. Nakamura (1993):CQC Modal Combination Rule for High-Frequency Modes, Earthquake
Engineering and Structural Dynamics, Vol.22, pp.943-956.
Rosenblueth, E. and J. Elorduy (1969): Response of linear systems to certain transient disturbances, 4th World Conference on
Earthquake Engineering, Vol.�, pp.185-196.
Singh, M. P. and K. B. Mehta (1983): Seismic Design Response by an Alternative SRSS Rule, Earthquake Engineering and
Structural Dynamics, Vol.11, pp.771-783.
Singh, M. P. and L. E. Suarez (1986): A perturbation analysis of the eigenproperties of equipment-structure systems, Nuclear
Engineering and Design, 97, pp.167-185.
Singh, M. P. and L. E. Suarez (1987): Seismic response analysis of structure-equipment systems with non-classical damping
effects, Earthquake Engineering and Structural Dynamics, Vol.15, pp.871-888.
Unruh, J. F. and D. D. Kana (1981): An iterative procedure for the generation of consistent power/response spectrum,
Nuclear Engineering and Design, 66, pp.427-435.
Wilson E.L., A. Der Kiureghian and E.P. Bayo (1981): A replacement for the SRSS method in seismic analysis, Earthquake
Engineering and Structural Dynamics, Vol.9, pp.187-194.

(a)Tp/Ts =1/4 (b)Tp/Ts =1/2 (c)Tp/Ts =1/1 (d)Tp/Ts =2/1 (e)Tp/Ts =4/1

Fig 5. Maximum Acceleration of Tower
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Fig 6. Maximum Stress of Brace Members of Tower
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