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SUMMARY

Energy flux provides a dynamic measure of seismic energy, and can be used to characterize the
intensity of ground shaking, as well as the response of structures. Energy flux is defined as the
amount of energy transmitted per unit time through a cross-section of a soil or a structural
medium. It is equal to kinetic energy multiplied by the propagation velocity of seismic waves. For
ground motions, the peak and the sum over time of energy flux  provide two simple measures of
shaking intensity. By definition, energy flux accounts for site amplification. The examples show
that energy flux gives a good detail of the shaking intensity in deep sedimentary basins. Energy
flux can be used directly as input to structures. For multi-story buildings subjected to vertically
propagating plane seismic waves, the flow of energy in the building can be formulated in terms of
upgoing and downgoing energy fluxes in each story. The formulation results in energy flux, as
well as energy demand and dissipation, time histories at each story of the building. Since it is in
discrete-time domain, the formulation is applicable to both linear and nonlinear structures. An
example for the methodology is presented by using a 10-story building founded on a two-layer soil
medium over bedrock.

INTRODUCTION

Seismic energy is one of the key parameters characterizing the intensity of ground shaking and the magnitude of
structural damage. The concept of using energy for seismic hazard assessment and seismic design was first
suggested by Housner (1956) more than forty years ago. Recently, new studies on developing energy-based
methods for seismic design have appeared in the literature (e.g., Uang and Bertero, 1988; Sucuoglu and Nurtuğ,
1995).  Although the concept is far from being adopted by practicing engineers, the energy-based methods will
likely be the foundation of future seismic design procedures. Most of the previous studies on the subject have
used a static measure of seismic energy, because they were based on the total energy at the end of the
earthquake. In this paper, we introduce a dynamic measure of energy, the energy flux, to characterize seismic
hazard and structural response.

Energy flux is defined as the amount of energy transmitted per unit time through a cross-section of a medium,
and is expressed by the following equation:

E t A v t V( ) ( )
1

2
2

where ρ and A are the mass density and the cross-sectional area, v(t) is the velocity response, and V is the
propagation velocity of seismic waves. Note that E(t) is equal to kinetic energy multiplied by the propagation
velocity.
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We characterize seismic hazard by considering the energy flux for a unit area  (i.e., A=1.0) of the soil layer next
to the surface. We define two simple measures of energy flux, the peak value, Emax, and the sum over time, Esum,.
which are

where T is the duration of the earthquake.

In order to use Emax and Esum for seismic hazard assessment, we need attenuation equations that show the
variation of Emax and Esum with magnitude and distance. At present, these equations are not available. However,
we can approximate them if we know the attenuation equations and the PDF (probability density functions) of
peak velocities. The attenuation equations for peak velocities, including their standard deviations, are available
in the literature. For the PDF, we can assume that they are lognormal. For each magnitude and distance, the
mean value and the standard deviation of the corresponding attenuation function specify the two parameters of
the lognormal distribution. Once we know the PDF of peak velocities, we can easily calculate the PDF of peak
squared-velocities, and consequently the PDF of peak energy flux at each magnitude and distance.  It can be
shown that if the PDF of peak velocities (for given magnitude and distance) is lognormal with parameters a and
b, the PDF of peak squared-velocities  is also lognormal with parameters 2a and 2b (Safak, 1999).

To approximate the attenuation equations for Esum, we first note that by definition Esum is related to the mean-
square value of v(t). The theory of extreme values of random variables provides closed form expressions for the
relationship between the mean-square and the peak values of random variables (e.g., Vanmarcke, 1983). By
using these expressions, we can approximate the distribution of the mean-square value of a random variable in
terms of the distribution of its peak value.  This leads to the distribution function for Esum, and consequently the
attenuation functions for the mean value and the standard deviation of Esum.

One of the advantages of using energy flux to characterize ground motions is that energy flux automatically
accounts for site amplification, because its definition includes the propagation velocity of seismic waves. It can
be shown that for a soil layer over bedrock subjected to vertically-propagating plane shear waves, the soil to rock
ratio of peak energy flux is equal to the maximum site amplification (Safak, 1999b).

To give an example of ground motion characterization by energy flux, we present in Figure 1 the distribution of
total energy flux in Santa Clara Valley, Northern California, for a hypothetical M=6.2 earthquake on the Monte
Vista fault. The earthquake and the resulting ground motions were simulated by using a three-dimensional finite-
difference model of the valley and the fault rupture (Harmsen et al., 1999). The fault dips about 65 degrees
southwest, and the rupture propagates up from the southeast corner to the northwest corner of the fault plane as
shown schematically in the figure. The areas with large values of energy flux generally correspond to the deepest
layers of the sediments in the basin. For comparison, we present in Figure 2 the 3-second PSRV (pseudo-spectral
response velocities) for the same simulation. The PSRV also show increased values for the deep sedimentary
regions, but fails to convey the detail and the resolution captured by the energy flux. In particular, a large area
over the Cupertino basin exhibits very distinct high-energy flux regions, but fairly uniform PSRV values.

STRUCTURAL RESPONSE

Energy flux can be used directly as input to a structure, which makes it possible to study the dynamics of energy
flow in the structure, including the time variations of energy demand and dissipation. Such a detailed knowledge
on energy provides important new tools for seismic design and safety evaluation.

For multi-story buildings on layered soil media and subjected to vertically propagating plane shear waves, we
can combine the building and the soil layers into a single layered system by assuming that the building is an
extension of the soil media and each story of the building represents another layer. This model allows us to
propagate the seismic energy starting from the bedrock and to account for the energy losses due to soil-structure
interaction. Figure 1 shows a schematic view of such a layered model.  The input energy flux, E0(t), enters the
system at the bedrock-soil interface, and propagates upward through the soil and building layers. The energy
flow in the system is composed of two components, the upgoing energy flux and the downgoing energy flux, as

        and       =
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shown in Fig. 3a. The upgoing and downgoing energies are partially reflected and partially transmitted to the
next layer as they cross layer interfaces. Reflections and transmissions are characterized by the reflection and
transmission coefficients, α and β,  as shown schematically in Fig. 3b. To determine α and β, we first calculate
the reflection and transmission coefficients for velocities by solving the two equations depicting the equality of
displacements and the equilibrium of shear forces at the interface. We then determine α and β by inserting the
velocity reflection and transmission coefficients in Eq. 1. It can be shown that the reflection and transmission
coefficients for energy flux are independent of the direction of energy flow. In other words, α and β  at an
interface are identical for upgoing and downgoing energy fluxes. This is in contrast to the reflection and
transmission coefficients for velocities, which are different for upgoing and downgoing waves. The details of the
calculations as well as the final expressions for α and β can be found in Safak (1999a, 1999b).  For interfaces
with concentrated mass, such as the soil-foundation interface or the building floors, α and β are frequency
dependent, whereas for interfaces with no concentrated mass, such as soil layers, α and β constant. It can be
shown that a concentrated mass at an interface acts as a low-pass filter; it transmits the low frequency
components to the next layer while blocking the high frequency components (Safak, 1999a).  Note that due to
the principle of conservation of energy α+β=1; that is, the sum of reflected and transmitted energies is equal to
the input energy.

To formulate the flow of energy in the layers, we select two energy flux variables in each layer: U(t), the
upgoing energy flux at the top of the layer, and D(t), the downgoing energy flux at the bottom of the layer. Fig.
3c shows three consecutive layers (layers j-1, j, and j+1) with their energy flux variables.  The upgoing energy
flux  Uj(t) is equal to the transmitted portion of the upgoing energy flux Uj-1(t) from the top of layer j-1, plus the
reflected portion of the downgoing energy flux Dj(t) from the bottom of layer j. Similarly,  the downgoing
energy flux Dj(t) is equal to the transmitted portion of the downgoing energy flux Dj+1(t) from the bottom of
layer j+1, plus the reflected portion of the upgoing energy flux Uj(t) from the top of layer j. When upgoing and
downgoing energies travel across a layer, their amplitudes are reduced due to damping in the layer. Damping is
characterized by an exponential function of the following form:  Aj(f)=exp(-π f τj / Qj), where τj  and 1/ Qj are the
wave travel time and the damping coefficient, respectively, of layer j, and f denotes the frequency in Hz. The
reduction in the energy flux amplitudes is equal to A2

j(f). By using appropriate damping coefficients, Aj(f) can be
shown to represent various forms of damping, such as viscous and structural damping. More on damping is given
in Safak (1999a). Based on the foregoing arguments, we derive the damped energy flux equations for layer j as
follows:

U t A f f D t f U t

D t A f f U t f D t

j j j j j j j j

j j j j j j j j

( ) = ( ) [ ( - ) + ( -  

( ) = ( ) [ ( - ) + ( -  

- -
2

1 1 1

2
1

( ) ( ) )]

( ) ( ) )]

For given E0(t), these equations can be solved recursively starting from the bedrock and continuing upward. The
net energy flux at the top and the bottom of layer j are

E t U t D t

E t U t D t

top j j j j

bot j j j j

,

,

( ) ( ) ( )

( ) ( ) ( )

The energy flux entering layer j is Uj(t-τj) from the bottom, and Dj(t-τj)  from the top. The energy flux exiting
layer j is Dj(t) from the bottom, and Uj(t) from the top. The energy dissipated per second, Edis,j(t), by layer j is the
difference of the entering and exiting energy fluxes, which is

E t U t D t U t D tdis j j j j j j j, ( ) ( ) ( ) ( ) ( )

The dissipated total energy, Etot,j, in layer j is

E E t dttot j dis j

T

, , ( )z
0

 Etot,j is a key parameter for design and safety analysis. Every story in a building should be able to dissipate this
energy without failure. Energy dissipation is accomplished through elastic and inelastic displacements, damping,
and other energy dissipation devices (e.g., friction and fluid dampers).
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As an example, we subjected a 10-story building founded on a two-layer soil medium to one of the rock-site
records from the Northridge earthquake. The detail on the characteristics of the building and the input can be
found in Safak (1999a). Figure 4 shows the upgoing energy fluxes at the top and the bottom of the soil and
building layers, and the dissipated energy in each layer.

CONCLUSIONS

Energy flux represents the amount of seismic energy transmitted per unit time through a cross-section of a
medium, and is equal to kinetic energy multiplied by the propagation velocity of seismic waves. Energy flux
provides a simple means to study the dynamics of seismic energy flow in the ground and structures. The peak or
the integral of energy flux can be used to characterize ground motions. By definition, energy flux automatically
accounts for site amplification. Using  ground energy flux as input, we can investigate the time varying
characteristics of energy flow, energy demand, and energy absorption throughout a structure. Such a detailed
knowledge of energy provides new tools to advance the methodologies used for seismic design and safety
assessment. For multi-story buildings founded on layered soil media and subjected to vertically propagating
seismic waves, we combine the soil layers and the building into a single layered system and develop energy flux
equations that account for soil-structure interaction. The methodology presented is applicable to both linear and
nonlinear structures.
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FIGURE 4 - Upgoing energy fluxes at the top and the bottom of layers, and the dissipated energy
                     in a 10-story building founded on 2-layer soil media and subjected to a recorded ground 
                     motions from the Northridge earthquake. 
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Abstract

Earthquake safety of structures depends largely upon the structure's ability to absorb the seismic energy that is
transmitted through the foundation. Development of energy-based methods for seismic hazard and structural
response has been a popular research topic in recent years. Most of the studies on this subject, however, are
based on the total energy transmitted from the ground to the structure at the end of the earthquake, and do not
account for the dynamic nature of the problem. A better understanding of seismic energy and its effect on
structural response can be obtained by studying the flow of energy in the structure during an earthquake.

Energy flow can best be described by energy flux, which is the amount of energy transmitted per unit time
through a cross section of a soil or a structural medium. For seismic waves, the energy flux is defined by the
following equation:

Energy flux = E t A v t V( ) ( )
1

2
2

 where ρ  is the mass density, A is the cross-sectional area, v(t) is the velocity response, and V  is the propagation
velocity of seismic waves.  Since the definition incorporates propagation velocity, the energy flux automatically
accounts for site effects. The seismic energy transmitted per unit time into the structure through the foundation
can be calculated in terms of the energy flux in the ground and the energy reflection coefficient at the soil-
foundation interface. For buildings founded on layered soil media and subjected to vertically-incident plane
shear waves, energy flux can be formulated in the discrete-time domain by modeling the building as an extension
of the layered soil medium, and considering each story as another layer in the wave propagation path.  The
formulation results in a pair of simple finite-difference equations for each layer, which can be solved recursively
starting from the bedrock.

Energy flux provides a convenient tool to investigate the dynamics of seismic energy and its propagation in
structures. Seismic hazard, including site effects, can be assessed by using various measures of energy flux, such
as the peak or the sum over time. Both linear and nonlinear structures can be analyzed using energy flux.
Numerical examples show the advantages of using energy flux to characterize ground motions and structural
response.


