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SUMMARY

A two-level algorithm is presented for optimum design of a 3D-frame under constraints on seismic
and elastic static responses. The optimal stiffnesses and corresponding horizontal seismic loads are
first found from a shear model considering the responses evaluated by a response spectrum
approach. In the lower level optimization problem, the cross-sectional areas of beams of plane
frames are optimized so that the stiffness of each story is equal to the specified value calculated
from the obtained stiffness of the shear model, and the response stresses are within the specified
limits. In this process, the cross-sectional areas of columns are fixed because a column belongs to
two plane frames in mutually perpendicular directions. In the upper level problem, sensitivity
analysis of the optimal objective values of the lower level problems is carried out to modify the
cross-sectional areas of columns. This way, the lower level problems can be solved independently,
and  two problems are successively solved to obtain the optimal design of a 3-D frame. The
efficiency of the algorithm is discussed in an example of a 27-story 3D-frame.

INTRODUCTION

There has been variety of methods presented for seismic design and optimum design of plane frames [Arora
1997, Nakamura et al. 1993]. Those methods, however, cannot be directly applied to a large-scale 3D-frame due
to limitations on computational capacity and approximation introduced to reduce the computational cost.
Although the recent dramatic progress in the field of computer science enabled us to carry out analysis and
optimization of moderately large frames, it is critical to develop more efficient algorithms for the designers to
use those methods in design practice.

Multilevel optimization method may be successfully applied for optimizing large-scale frames [Sobieski et al.
1985, Grierson and Chiu 1984, Friedman and Fuchs 1987]. In the standard formulation of multilevel
optimization problem, interaction between the upper and lower problems are modeled by using the parametric
programming techniques [Fiacco 1983, Guddat et al. 1990] which may also be used in conjunction with the
substructure method for optimizing large structures [Svensson 1987]. These methods are combined to be called
multidisciplinary optimization method [Sobieski and Haftka 1997] where the process of optimizing a large
structural system is divided into several hierarchical and non-hierarchical subsystems. Note that the subsystem
can represent a subprocess as well as a physical substructure. To the authors' knowledge, however, there is no
efficient multilevel optimization algorithm specially developed for large 3-D building frames.

In this paper, a two-level algorithm that is suitable for parallel computing is presented for optimization of large
3-D building frames. The 3D-frame is considered as an assemblage of plane frames, and is optimized by using
an optimization algorithm based on a parametric programming approach [Ohsaki 1997]. The efficiensy of the
algorithm is demonstrated in the example of a 27-story three-dimensional frame.



06862

DEFINITION OF SEISMIC LOAD AND STORY STIFFNESS

Consider a 3-D frame as shown in Fig. 1, which is regular but not necessarily symmetric. To reduce the
computational cost for analysis and design of a large 3-D frame, the frame is divided into plane frames
assuming that the interaction among the frames in the same direction is negligibly small. The effect of the
torsional moment from the beams that are perpendicular to the plane frame is also neglected. In the process of
evaluating the horizontal earthquake loads and the optimal interstory stiffnesses, the 3-D frame is further
simplified into a shear model as shown in Fig. 1(c).

The story stiffness of the plane frame is to be found so that the mean-maximum interstory drift is equal to the
specified value under a set of earthquakes that are compatible with the given design response spectrum. Let

{ }**
iD=D  denote the vector of interstory stiffness of the shear model. The stiffness matrix ( )*DK s  and the

mass matrix ( )*DMs  are the functions of *D . The r th eigenvalue and eigenvector are denoted by ( )*DrΩ  and

( )*DΦ r , respectively, which are defined by

( ) ( ) ( ) ( ) ( )***** DΦDMDDΦDK r
s

rr
s Ω= (1)

 The interstory drift of the i th story corresponding to ( )*DΦr  is denoted by ( )*DriΨ . Then the mean-maximum

interstory drift ( )*Diδ  for the set of earthquake excitations that are compatible with the specified displacement

response spectrum ( )rDS Ω  is evaluated by the Square-Root-of-Sum-of-Squares (SRSS) method as

( ) ( ) ( ) ( )[ ]
2

1

*** ∑
=

ΨΩ=
p

r
rirrDi S DDD βδ (2)

where ( )*Drβ  is the participation factor for the r th mode, and p  is the number of modes to be used for

evaluation of the responses.

Let iδ  denote the specified interstory drift. The story stiffness { }**
iD=D  is found so that

( ) ii δδ =*D (3)

is satisfied. Note that (3) is solved by using a Newton-Raphson type algorithm, an unconstrained optimization

technique, or a fully-stressed design algorithm [Haftka et al. 1990]. Since the numbers of design variables *
iD

and the constraints (3) are same, the values of *
iD  are uniquely determined by (3). It is desired that *

iD  should

be recalculated after optimization of cross-sectional areas of beams and columns, because the mass matrix

depends on the cross-sectional areas. In the following, the argument *D  is not written explicitly for simpler
presentation of the formulations.

         (a) Plan view (b) Elevation         (c) Shear model

Fig. 1:  A three-dimensional frame model.
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The story shear force *
iQ  and the horizontal load *

iP  are defined as follows in terms of the interstory drift and

the story stiffness:

iii DQ δ** = (4)
*

1
**

+−= iii QQP (5)

OPTIMUM DESIGN OF PLANE FRAMES FOR SPECIFIED STORY STIFFNESS

A 3-D frame is considered as an assemblage of plane frames, and is optimized by using a two-level optimization
algorithm. Consider a set of plane frames in one of two principal directions; i.e. x - or y -direction in Fig. 1(a).

The story stiffness of the 3-D frame is shared by the plane frames so that the torsional deformation does not
occur even if the locations of the columns are not symmetric.

Let S  and jS  denote the area of each floor and the area covered by the j th plane frame. The mass is assumed

to be uniformly distributed at each floor. Then the interstory stiffness j
iD  of the i th story to be specified for the

j th plane frame, the horizontal load, and interstory shear of a plane frame are given as

*** ,, i

j
j

ii

j
j

ii

j
j

i Q
S

S
QP

S

S
PD

S

S
D === (6)

In this case, the interstory drifts of the plane frames in each direction are same without any interaction through
the shear force of the floor. In the following, the values corresponding to the j th frame is indicated by the

superscript j . Let j
iA  and ( )j

i
j

i AI  denote the cross-sectional area and the moment of inertia of the i th member

of the j th plane frame. Note that ( )j
i

j
i AI  as well as the section modulus ( )j

i
j

i AZ  is a function of j
iA . Two load

vectors VjP  and { }j
i

Hj P=P  corresponding to the self-weight and the horizontal loads defined by (6),

respectively, are considered for evaluating the responses.

The frame considered here does not necessarily have an axis of symmetry. Therefore, the responses for

horizontal loads in the two opposite directions should be evaluated. The stress i
jσ  of the i th member of the j th

plane frame is defined as the maximum value of the absolute values of the stresses at the two faces of two ends

of the member for the loads HjVj PP +  and HjVj PP − . For the beams, the moment ( )2
12

1 j
iLq±  due to the

distributed load is added at each end, where q  is the vertical load per unit length and j
iL  is the length of the i th

member. The effect of axial deformation is considered in evaluating the stresses of the columns. Note that the
axial force does not exist in the beams because of the assumption of rigid floor.

The interstory drift of the frame which is same for HjVj PP +  and HjVj PP −  is denoted by j
iδ . Then the story

stiffness j
iD  of the frame is calculated from

j
i

j
ij

i

Q
D

δ
= (7)

Let j
iσ  denote the upper bound for j

iσ . The lower bound for j
iA  is denoted by j

iA . Then the problem for

minimizing the total mass jW  of the j th plane frame is stated as

Minimize ∑
=

=
jm

i

j
i

j
i

j ALW
1

ρ (8)

Subject to j
i

j
i σσ ≤ (9)

j
i

j
i DD ≥ (10)

j
i

j
i AA ≥ (11)

where jm  is the number of members of the j th plane frame, and ρ  is the mass density of the beams and

columns [Ohsaki 1997]. The constraint (10) is equivalent to a constraint on the interstory drift if the relation (7)
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is used for the specified value of j
iQ .

In the examples, the optimal solutions are found by using the method of modified feasible directions which
utilizes sensitivity information. The details of design sensitivity analysis are not explained here, because it is
rather straightforward for static elastic responses.

OPTIMUM DESIGN OF 3-D FRAMES

Optimum design of a 3-D frame is found by successively optimizing the plane frames. A serious difficulty arises,
however, from the fact that the columns belong to two plane frames in different directions, whereas the beams
are included in only one frame. Therefore, the cross-sectional properties of the columns cannot be modified
independently in the process of optimizing a plane frame.

In the proposed two level optimization algorithm, the upper and lower problems are solved successively to find
the optimum design of a 3-D frame. The cross-sectional areas of the columns are fixed in the lower-level
problem for optimizing the beams of the plane frames. After optimization of all the plane frames is completed,
the cross-sectional areas of the columns are modified in the upper level problem based on a parametric
programming approach. Then the beams of plane frames are optimized again in the lower level problem for the
updated values of cross-sectional areas of the columns.

Suppose the member numbers of a plane frame are assigned so that the members j
bm,,2,1  are beams and

jj
b

j
b mmm ,,2,1 ++  are columns, where j

bm  is the number of beams. Let j
iλ , j

iη  and j
iµ  denote Lagrangian

multipliers. The design variables for optimization of j th plane frame are the cross-sectional areas of beams

which are denoted by j

m

jj
j

b
AAA ,, 21 . Then the Lagrangian jΠ  is written as

∑∑∑∑
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where fn  is the number of stories. The multipliers are calculated at each step of optimization if a primal-dual
method is used. Even if the multipliers are not available, those are easily calculated after the solution has
converged.

The member numbers are assigned also for the 3-D frame so that the members bm,,2,1  are beams and

mmm bb ,,2,1 ++  are columns, where m  is the total number of members and bm  is the number of beams. In

the following, the values for the total 3-D frame is indicated without superscript j . The objective function is the

total structural volume that is defined by

∑
=

=
m

i
ii ALW

1

ρ (13)

Let C
kA  denote the cross-sectional area of the k th column. The sensitivity coefficients of C  with respect to  C

kA

are calculated from [Fiacco 1983, Sobieski et al. 1985]
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where sn is the number of plane frames. The cross-sectional area of the columns are modified based on the
steepest decent algorithm.

The optimization algorithm is summarized as:
1. [Definition of optimal story stiffness and horizontal seismic loads:]

Find optimal story stiffness *
iD  and corresponding seismic load iP  to define j

iD  and j
iQ  to be specified

for optimizing the plane frames.

2. [Initialize C
iA :]

Optimize each plane frame by considering cross-sectional areas of all the members as independent design

variables. Then the value of C
iA  is defined, e.g., as the mean value or the maximum value of C

iA   in the

plane frames in two different directions. This process can be parallely carried out, but can be omitted if a
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default initial value is given for the cross-sectional areas of columns.
3. [Lower level problem:]

Find optimal cross-sectional areas of beams by optimizing plane frames for fixed cross-sectional areas of
columns, and calculate Lagrangian multipliers for the constraints. Note that the optimization of each
plane frame can be carried out independently and parallely, if possible, also for this lower level problem.

4. [Upper level problem:]

Calculate from (14) the sensitivity coefficients of the objective function with respect to C
iA  and modify

C
iA  based on the steepest decent method.  A move limit A∆  is given for preventing divergence, and A∆

is  reduced to A∆β  )10( << β , if the objective value has increased, to enable a convergence to the

optimal value. There might be no feasible solution, however, if C
iA  is reduced too drastically; e.g. the

constraints of story stiffness cannot be satisfied by optimizing the cross-sectional areas of beams if all the
C
iA ’  in a story have too small values. For such a case, C

iA  is modified as follows depending the

constraints that are violated:

Interstory drift: )1( 11 >= γγ C
i

C
i AA (15)

Stress of beam: )1( 22 <= γγ C
i

C
i AA (16)

Stress of column: )1( 33 >= γγ C
i

C
i AA (17)

where 321 ,, γγγ  are the parameters to be specified. Note that the cross-sectional area of the columns

should be increased if the stress constraints of beams are violated.
5. Go to 2 if the solution is not converged.

EXAMPLES

Optimum designs have been found for a 27-story 3-D frame with a plan view as shown in Fig. 1(a). The span
lengths (m) in x - and y -directions are )10,10,12(),,( 342312 =WWW  and )10,8,8(),,( CDBCAB =WWW ,

respectively., where ijW  is the distance between the lines i  and j  defined in Fig. 1(a). The elastic modulus is

GPa205.8  and the mass at each floor is 2kg/m800 . The mass density ρ  is 3-3 kg/cm107.86× . The values of
j

iI  and j
iZ  are defined as the functions of j

iA  as

Column: ( ) ( ) 5.12
0.1,2.1 j

i
j

i
j

i
j

i AZAI == (18)

Beam: ( ) ( ) 5.12
0.2,0.8 j

i
j

i
j

i
j

i AZAI == (19)

The lower bound for the cross-sectional area is 2cm50 .

The response spectrum is given as the minimum value of the following functions of the eigenvalues [Newmark
and Hall 1982]:

( ) rArD CS Ω=Ω /1

( ) 36.1
2 2.16 −Ω=Ω rAArD ACS

( ) rAArD ACS Ω=Ω /3 (20)

( ) rVVrD ACS Ω=Ω4

( ) DDrD ACS =Ω5

where the parameters for acceleration, velocity and displacements are

cm75.18,cm/s25.0,cm/s201.0 2 === DAA CCC (21)

and the parameters DVA AAA ,,  are defined by the damping factor rh  of the r th mode as

( )rA hA 100log0.68-3.21=
( )rV hA 100log0.41-2.31= (22)

( )rD hA 100log0.27-82.1=
Six modes are considered for evaluating the seismic responses of the shear model. The damping factors are
proportional to the frequency, and 02.01 =h .

The columns of the 3-D frame and the beams of each plane frame are divided, respectively, into 15 and 5 groups
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with same cross-sectional areas. The package DOT [VR&D 1995] has been used for optimization, and the
method of modified feasible directions is used. Optimization has been carried out on Sun Ultra2 (UltraSPARC

2MHz300 × ). The upper bounds for the maximum interstory drift and the stresses are cm0.2 and MPa323.4 ,

respectively. The parameters for modification of the cross-sectional areas of columns are 25.11 =γ , 95.02 =γ ,

25.13 =γ , 8.0=β  and the initial value of A∆  is 210.0cm

The cross-sectional area of a column at the first stage is chosen as the mean value of the optimal cross-sectional
areas of the columns of the plane frames in two directions. The two level procedure has converged at the fourth
step of the upper level problem. The optimal solution at the fourth step is as shown in Fig. 2, where (a)-(d) and
(1)-(4) in the figure are as defined in Fig. 1(a), and the width of each member is proportional to the cross-

sectional area. Note that the total mass of the beams and columns is ton36.896  and the mass per 2m1  of the

floor is kg387.50 .

The maximum and minimum values of the cross-sectional areas for this case are 2cm36.1009  and 2cm79.571 ,

respectively. It may be observed from Fig. 2 that the columns in the core have large cross-sectional areas
compared with the exterior columns. CPU time for this example is 770.65 sec which is moderately small.

CONCLUSIONS AND DISCUSSIONS

A two-level algorithm has been presented for optimizing a 3D-frame under constraints on seismic responses as

Fig. 2:  Optimization results.
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well as the static responses under self-weight. First, the design earthquake loads and the optimal interstory
stiffness are found from a shear model considering the earthquake responses evaluated by a response spectrum
approach. In the lower level, the cross-sectional areas of beams are optimized  so that the stiffness of each story
is equal to the specified value, and the response stresses are within the limits. In the upper level, the sensitivity
analysis of the optimal objective values of the lower level problems is carried out to modify the cross-sectional
areas of columns.

It has been shown in the example of a 27-story 3-D building frame that the solution converges in several iterative
steps of the upper level problem, and the computational time for obtaining the optimal solution is small enough
to be applied in design practice. Note that the lower level problems can be solved parallely, and the CPU time
will be drastically reduced in the distributed computing environment.

The story masses should be updated if more accurate solutions are needed. The stresses should be evaluated at
the face of the facees of the connections to incorporate more realistic situation. The effect of interaction among
the plane frames in the same and different directions should be evaluated for the optimal solution by carrying out
a response analysis of the total 3-D frame.
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