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TIME INTEGRATION SCHEME THAT ELIMINATES HIGH FREQUENCY NOISE
BY DIGITAL FILTER
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SUMMARY

In the dynamic analysis of the nonlinear system with large degrees of freedom, stability of
computation is an essential problem.  Since noise in high frequency range often triggers instability
of the computation, various time integration schemes that have an effect to dampen the noise, such
as Wilson  method, have been developed.

This paper presents a digital filtering time integration (DFTI) scheme, which eliminates high
frequency noise by using digital filtering technique. Usage of digital filter enables the
implementation of widely adjustable damping. It can implement various frequency characteristics
that other conventional time integration schemes can not have.

Theory and computation process are described in the paper. The frequency characteristics of the
DFTI scheme are also investigated and compared with those of conventional time integration
methods. It is shown that the DFTI scheme can eliminate high frequency noise efficiently and that
it does not deteriorate the accuracy of the analysis in the frequency range of practical concern.

DFTI scheme can work with various conventional time integration methods, and it is applied to a
central difference method in this paper. Efficiency of the DFTI scheme is illustrated by the
numerical example of a nonlinear dynamic analysis. The results show that the DFTI scheme can
eliminate high frequency noise without losing accuracy of the analysis.

INTRODUCTION

High frequency noises often cause serious problem in computation of dynamic system by triggering instability of
the computation process, especially when the system has large degree-of-freedom and/or nonlinear material
behavior is considered. In such analyses, elimination of high frequency noise is essential.Necessity of the
elimination of high frequency has been recognized and various methods have been proposed, such as the β
method [Newmark 1959], θ method [Wilson 1968], α method [Hilber et al. 1977], the beta-m method [Katona
Zienkiewicz 1981], θ1method [Hoff  Pahl 1988a,b], generalized α method [Chung  Hulbert 1993]. These
methods have algorithmic damping to annihilate high frequency components.

It is also true, however, that larger damping is required to stabilize the computation process  in practical cases,
and usually physical damping is added. Rayleigh damping, which is given as C = αM + βK( α and β are
parametric constants., M, C and K are mass, damping and stiffness matrices  respectively.) is widely used and an
M(M-1  K)mproportional damping [Munjiza  Owen 1998] is also available.

This paper presents a digital filtering time integration (DFTI) scheme. It adds algorithmic damping to the
analysis by using digital filtering.  Filtering is performed as a part of the time integration process.



Authors have already presented a time integration scheme with digital �ltering [Honda & Sawada 1998],
but detail characteristics of the scheme is not discussed. In this paper, we will discuss the frequency
characteristics of the DFTI scheme and it is compared with conventional time integration methods;
Wilson � method and Newmark � method.

It is a unique point of the DFTI scheme that it works with various types of conventional time integration
methods. Application of the DFTI scheme to the Newmark � method is already shown [Honda & Sawada
1998]. In this paper, we will discuss the way to apply the DFTI scheme to the central di�erence time
integration method.

The �rst part of this paper describes the theory and the computation process of the DFTI scheme. In the
next part, frequency characteristics of the DFTI scheme is described. It is followed by the section that
discusses the algorithm to apply the DFTI scheme to the central di�erence method. Dynamic analysis
of a nonlinear system conducted using the DFTI scheme is also introduced and computation results are
presented to show the applicability and eÆciency of the DFTI scheme.

2 DIGITAL FILTERING TIME INTEGRATION (DFTI) SCHEME

Let us assume fxng is an original time series and f~xng is a digitally �ltered time series. fxng and f~xng
include all variables that appear in the equation of motion, such as displacement, velocity, acceleration
and external force. They are referred to as state vectors in the rest part of this paper.

Computation process is summarized as follows. Here we consider a case in which time step is updated
from t = tn�1 to t = tn. First, we calculate a state vector fxng by some time integration method.
It gives an 'un�ltered' state for the n-th time step. Next, a '�ltered' state vector f~xng is obtained by
applying the digital �lter as :

~xn =
MX
i=0

aixn�i �

NX
i=1

bi~xn�i (1)

where ai's and bi's are coeÆcients of the digital �lter, M and N are number of data at earlier time levels
to be used for evaluation of ~xn.

Digital �lter generally has a delay and its e�ect must be taken into consideration. In order to avert the
bad e�ect of the delay of digital �lter, in the DFTI scheme, un�ltered time series fxng is assumed to
have a value at a time level t = tn + � (� : delay of the �lter). This assures that the �ltered time series
f~xng have the values at time t = tn. Computation process of the DFTI scheme, considering the e�ect
of the delay of the digital �lter, is illustrated in Fig{1.

It is also important to consider the e�ect of frequency characteristics of the digital �lter. Gain of the
�lter should be 
atly unit for the low frequency range and it should decrease in the concerned frequency
range. Delay of the �lter should also take constant value in the concerned frequency range.

Here we use the rational Legendre �lter [Sato, 1976]. It is a 
at-delay 
at-attenuation IIR (in�nite
impulse response) �lter. CoeÆcients (ai's and bi's) of the rational Legendre �lter are given as a function
of M , N ( see eqn.(1) ) and delay � , and therefore they can be easily calculated. Maximally 
at delay
(MFD) �lter [Thiran, 1971], which has much larger attenuation in the relatively low frequency range
and therefore it serves as a more severe �lter, is also available.

Examples of the attenuation and delay of the rational Legendre �lter are shown in Fig.{2.
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Figure{1 Computation process of DFTI
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Figure{2 Frequency characteristics of the rational Legendre �lter : Attenuation and delay take 
at
value in the low frequency range.

3 FREQUENCY CHARACTERISTICS OF DFTI SCHEME

In this section, frequency characteristics of the DFTI scheme are investigated and compared with those
of the Wilson � and the Newmark � method.

Frequency characteristics is investigated by the behavior of the solution of the equation of motion with
the natural period of ! :

�x = �!2x: (2)

Usually the DFTI scheme is used with a conventional time integration method. In order to consider the
e�ect of DFTI, however, we use the DFTI scheme with the analytical solution of equation (2). When
state vector at time t = tn is given as the initial condition, analytical solution at t = tn+�t is given as,

x(t +�t) = Tx(t) (3)

where

x(t) =

�
x(t)
_x(t)

�
; T =

�
cos(!�t) 1

!
sin(!�t)

�! sin(!�t) cos(!�t)

�
(4)

3



By assuming a vector as,

x(t) = f~xn; ~_xn; ~xn�1; ~_xn�1; � � � ; ~xn�N+1; ~_xn�N+1; xn; _xn; xn�1; _xn�1; � � � ; xn�M+1; _xn�M+1g
T; (5)

free oscillation solution of the equation (2) is written, assuming matrix A appropriately, as,

xn+1 = Axn: (6)

Eigen values of A, �i(!), indicates the estimated period T 0

i
and algorithmic damping ��i as,

T 0

i
=

2�

�!i
(7)

�!i = �
i=�t (8)
��i = �Re(log(�i)=�
 (9)
�
i = Im(log(�i)) (10)

Frequency characteristics of the Newmark � method and the Wilson � method are also estimated in the
same manner.

Comparison of frequency characteristics of the DFTI scheme with the rational Legendre �lter ( N =
6;M = 10; � = 6 ), the Newmark � method (� = 1

4
) and the Wilson � (� = 1:4) is shown in Fig.{3. In

Fig.{3(a) the estimation error of the period T
0
�T

T
is plotted against the normalized frequency, and it is

shown that the error of the DFTI scheme is smaller than those of other two methods. For example at the
frequency �t

T
= 0:1, the DFTI scheme takes about zero while other methods take values of 0.02 or larger.

This indicates that the DFTI scheme does not deteriorate the computational accuracy for a relatively
wide frequency range. Fig.{3(b) shows that damping of DFTI is smaller in the low frequency range and
larger in the high frequency range, than those of the Wilson � method. The Newmark � method does
not have algorithmic damping when � = 1

4 . This result indicates that DFTI scheme can eliminate high
frequency component eÆciently and adds little damping to the relatively low, and practically important,
frequency range.

4 APPLICATION TO CENTRAL DIFFERENCE METHOD

In this section, application of the DFTI scheme to the conventional time integration method is discussed,
taking the central di�erence method as an example.

Let us consider the equation of motion as,

[M ]�x+ [C] _x+ [K]x = p(t) (11)

where x; p; [M ]; [C]; [K] denotes displacement, external force vector, mass, damping and sti�ness matri-
ces. The central di�erence method rewrites this equation as,

[M ]
xn[+1] � 2xn + xn[�1]

�t2
+ [C]

xn[+1] � xn[�1]

2�t
+ [K]xn = pn: (12)

In equation (12), displacement at time level t = tn+1 and t = tn�1 are expressed as xn[+1] and xn[�1],
instead of xn+1 and xn�1 as they are in the ordinary formulation. The DFTI scheme �rst computes the
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Figure{3 Frequency characteristics of the accuracy of estimated natural period and algorithmic damp-
ing. They are compared among DFTI scheme, Newmark � method and Wilson � method. Frequency is
normalized by multiplying �t.

un�ltered state vector fxng and then estimates the �ltered state vector f~xng by digital �ltering. Since
xn+1 and xn[+1] in equation (12) are not always identical, we need to assume a state vector xn[+1] that
satis�es equation (12). Considering this, we adopted xn[+1], which is used as the state vector at time
t = tn+1 and it is used only when the equation of motion at time t = tn is considered. xn[+1] is used to
satisfy the equation of motion at time t = tn and not at time t = tn+1. Therefore xn[+1] and xn[�1] are
included in the state vector fxng for the time level t = tn.

The computation process to update from time level t = tn to t = tn+1 can be summarized as follows.
First, we estimate ~xn[+2] from ~xn[+1] and ~xn by using equation (12). By repeating the same procedure
�+1 times, we obtain ~xn[+�+2] , ~xn[+�+1] and ~xn[+� ] . They corresponds to the un�ltered state vectors
xn+1[+1], xn+1 and xn+1[�1]. Digital �ltering of these vectors give the �ltered state vectors ~xn+1[+1], ~xn+1
and ~xn+1[�1]. It should be noticed that both �ltered and un�ltered state vectors satisfy the discretized
equation of motion (12) at every time level.

5 NUMERICAL EXAMPLE

DFTI scheme is applied to the dynamic analysis of a nonlinear 2-degree-of-freedom system. The system
consists of two masses and two springs. Bi-linear model is assumed as the restoring force-displacement
relationship of the springs.

Natural periods of the �rst and second modes of the system are 3.74 and 0.05 seconds. In order to make
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the system unstable, Rayleigh damping is added so that damping ratio becomes negative in the high
frequency range. Damping ratio is set 0.01 and -0.01 for the �rst and second modes' natural frequencies,
respectively. Because of the negative damping (-0.01) added to the high frequency range, the system has
a tendency to diverge. In the analysis, Ricker wave is used as the input motion.

Time histories of the displacement of mass at the top are shown in Fig{4. Due to the negative damping
added to the system, analysis without �ltering has a strong trend of divergence, while the analysis by
the DFTI scheme is stable.
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Figure{4 Time histories of the displacement obtained by the dynamic analysis of the nonlinear 2-DOF
system. The diverging tendency observed in the case without �ltering is constrained in the analysis
conducted with the DFTI scheme.

6 CONCLUSION

Digital �ltering time integration (DFTI) scheme, which eliminates the high frequency noise of dynamic
analysis, is presented and its theory and computation process is discussed.

The DFTI can be used with various time integration scheme. In this paper, algorithm to apply it to the
central di�erence method is presented. Frequency characteristics of the DFTI scheme is also discussed
and compared with those of the Wilson � method and the Newmark � method. Comparison results
show that the DFTI scheme can implement a frequency characteristics that is suitable for the purpose
of numerical computation.

Dynamic analysis of the nonlinear system with strong trend to diverge is also conducted. The analysis
which diverged when it was conducted with the ordinary method was stably analyzed by using the
DFTI scheme. The computation results can be considered to show the applicability and eÆciency of the
presented DFTI scheme.
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