0726

A RATIONAL DYNAMIC ANALY SIS PROCEDURE FOR THE DAMAGE
CONTROLLED STRUCTURES (DCS)

AkiraWADA", Yi-Hua HUANG? And Hiroyuki NAKAMURA?

SUMMARY

Since the Hyogoken-Nanbu earthquake 1995, damage controlled seismic structures with damper
system which is a kind of passive energy dissipation system, simply called the damage controlled
structures (DCS), have been dramatically increased in Japan. The DCS is suitable not only to the
newly constructing structures, but also to the retrofitting of existing structures. The advantage of
DCSis easy to control the damage caused by the earthquake into the specific members or devices.
The primary structure hence can be prevented from the damage and can be continuously reused
even after a extreme earthquake as long as the damaged members or devices are adjusted or
replaced. An obvious characteristic of DCS is that the distribution of elastic and inelastic parts of
the whole structure is known in the design stage. Suitable numerical analysis methods can be used
for the elastic and inelastic structures in order to achieve the maximum computation performance.
This paper reports arational dynamic analysis procedure for DCS. In the proposed procedure, let
the elastic part of the global stiffness matrix remained on the left side of the dynamic equation and
the inelastic part expressed by the form of forces and moved to the right side of the equation. The
advantage of this transformation is not only that the global transient stiffness matrix does not need
to be re-established during the step by step computation, but also that it is easy to treat various
newly developed damper systems as long as the relationship between force and deformation are
given. Mathematical models of some typical damper systems are also presented.

INTRODUCTION

During the Northridge earthquake in the USA 1994 and the Hyogoken-Nanbu earthquake in Japan 1995, there
were a great number of damages occurred even in steel structures. In recent years, researches on the earthquake-
resistant design of steel structures have been mainly concentrated in two fields. One is the design details of beam
and column connections to increase their ductility (Bleiman 1996, Engelhardt 1995, Tsai 1996, etc.). Some
designs try to shift the position of large plastic deformations from the beam ends to the inside of the span.
However, alarge part of the earthquake input energy should be still absorbed by the primary structural members.
Another research field is to control the damage caused by an earthquake into some specific members, devices or
components called damper systems (Connor 1997, Wada 1992 1995 1997, Iwata 1995, Soong 1997, Kasai 1993
1997, etc.) Thiskind of structure is called damage controlled structure (DCS). The basic function of the damper
systemis to reduce the energy dissipation/absorption demand of the primary structure and achieve the purpose of
controlling structural damage. The primary structure can still behave elastically even during an extremely large
earthquake, provided that sufficient suitable damper systems are installed in the structure. The application of
damper system in seismically designed structures is paid extensive attention in the world-wide seismic active
regions.
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For conventionally designed structures, it is impossible to predict which part of the whole structure will suffer
plastic deformation under extreme earthquake. The transient stiffness matrix of an element and the global
stiffness matrix have to be re-established during the step by step computation. It is very complex and will
consume a lot of computing time if non-linear dynamic analysis is needed for a large scale structure. For the
DCS, however, It is obvious that the distribution of elastic and inelagtic parts of the whole structure has been known in
the design stage. Different reasonable numerical analysis methods can be gpplied for the dagtic and indlagtic Sructuresin
order to achieve the maximum computation performance.

This paper reports a rational dynamic analysis procedure for three dimensional damage controlled structures. In
the proposed procedure, let the elastic part of the global stiffness matrix remained on the left side of the dynamic
equation and the inelastic part expressed by the form of forces and moved to the right side of the equation. The
advantages of this transformation are: (1) the global transient stiffness matrix does not need to be re-established
during the step by step computation; (2) to avoid the transient stiffness of damper element becoming too large or
too small which will cause the numerical computation unstable; (3) it is easy to treat numerically various newly
developed damper systems as long as the relationship between force and deformation are given. In the later part
of this paper, mathematical models of some typical damper systems are presented.

BASIC DYNAMIC ANALYSISMODELS

In the conventional gpproaches of dynamic response anaysis, the contribution of indlastic members such as hysteretic
dampersare considered asa part of globa gtiffness matrix. The dynamic equation is usually written in the form of Eq.(1).

MX +CX +K  f&X +F. =-MX, 6

where, M isthe lumped mass matrix; C isthe natura damping matrix; K1 isthe trandgent stiffness matrix which includes
the elagtic and inelastic properties of the whole structure; F+ isthe interna force vector at previous computing step; X is
the response displacement vector including rotational components; X isthe regponse vel ocity vector; X isthe response
acceleration vector; AX isthe vector of displacement increment from previous step to current step; X g isthe acceleration
vector of ground motion.

For conventiona structures, as mentioned in the introduction, the transent globa stiffness matrix K+ in Eq.(1) will
include the elagtic part and indlagtic part. For DCS, however, the global transient giffness matrix K+ can be divided into
two independent parts. eadtic part and inelastic part. The eagtic part denotes the contribution of primary structure and
the indadtic part denotes the contribution of the damper system. Furthermore, the damper system can be expressed by the
force vector and moved to the right Sde of the dynamic equation. Therefore, Eq. (1) can be rewritten in the form of

Eq.(2)

MX +CX +KX =-MX, - F, )

Where, K on the Ieft Sde of Eq.(2) is the eastic global stiffness matrix of the primary structure and always remainsin
condant during the whole step by step computation. F4 on the right Sde of Eq. (2) is the force vector of the damper
system and depends on the displacement, velocity, temperature and the properties of damper materid. Fy, therefore,
should be avery complicated function of such factors

F, =f,(X,X,8,P) €)

where, f4() denotes the function of the damper force vector, 6 is the temperature of the damper (especidly for a
viscoelagtic damper), P denotesthe damper materid properties.

2 0726



All items on the left side of Eq. (2) are linear functions of displacement, velocity and acceleration. Those on the
right side are the earthquake force subtracted by the damper force. The basic concept of Eq. (2) was first
proposed by Huang (1995) and was used in the dynamic analysis of a shear-bending model with a multiple mass-
spring-dashpot system for damage controlled seismic design of tall steel buildings. It is very easy to expand the
concept to the dynamic response analysis of athree-dimensional frame model. Eq.(2) obviously shows that there
will be no damage to the primary structure if sufficient and reasonable energy dissipation/absorption capacity of
supplemental damper system is provided.

In the numerical time integration of Eq.(2), the force equilibriums are taken at the next time step t+At. However, the
force vector of damper Fg . at time t+ At had not been known before the acceleration at time t+ At is resolved. Here, we
propose that the deformation of the damper at time step t+A4t is predicted from the vaues a 3 steps by means of the
Lagrange interpolation. If the time increment At is a condtant, the second order Lagrange interpolation formula can be
smplified in thefollowing smple form.

O tear = 0qi-oar ~30giac T30g, @)

The damper force Fy. @ time step t+ At can be caculated from the damper deformation &y . at time step t+At and the
assumed hysteresis model of the damper. The unbalanced damper forces should be eiminated through the repetitive
calculation during one time increment.

MECHANICAL MODELSOF VARIOUSDAMPER SYSRTEMS

The relationship between force and deformation of the damper is usually obtained from the experimental results
of an individual damper or calculated from the constitutive law of the damper’s materials. However, the damper
deformation greatly depends on the member stiffness that are used to attach the damper to the primary structure.
Figs. 1(a) and (b) show two typical damper installations in primary structures. Fig. 1(a) shows a brace-type
damper connected to a primary structure with two elastic connecting members. This kind of damper is subjected
to axial force and axial deformation only. Fig. 1(b) shows a shear-deformed damper connected to a primary
structure by two short elastic columns which are also called connecting members. It is very important to
determine the elastic stiffness of the connecting member because it will affect greatly the damping effect.

(1) Elagtic giffness of a connecting member in a brace-type damper sysem

If the damper isinstaled in the centre of an eagtic brace, the Stiffness of the connecting members at each end of it can be
determined from the relationship between the force and deformation of the connecting members. For the dampers shown
inFig. 1(a), the stiffness of the connecting members of the damper is given by Eq. (5).

Dampe\ri /'

Connectin
members  [ESl4—Damper

4—— Connecting members

(a) Bracetype damper (b) Shear type damper

Fig. 1 Installation of two types of damper
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where, A, Ay, |1, and |, arethe areas and lengths of the two braces at ends of the damper shownin Fig. 1(a).
(2) Elagtic giffness of a connecting member in a shear-type damper

For the damper ingtalled midway between two connecting members adjoining the upper and lower floor beams shown in
Fig. 1(b), the stiffness k. (Eq.(6)) of the connecting membersis determined from the relationship between the force acting
at thetip in the direction of the connecting member, and the shear, as well asthe bending deformation.

1
K= | ERENE ©

il + i2 + il + i2
GA, GA, 3E, 3B,

where, Ag1, Ago, li1, iz are the shear areas and lengths of the lower and upper connecting members shown in Fig. 1(b).

The dampers shown in Fig. 1 can be moddled asamultiple directiona inelagtic springs shown in Fig. 2. The axial spring
denotes the brace-type damper whose axid force is denoted by Ny. The shear spring stands for the shear type damper
whose shear force isdenoted by Q. The bending moment B of agtic bending spring can be cal culated from the bending
dtiffness and the rational angle produced from the rotetional deformation 6 and § at each end of the i'th damper and is

Axia deformed damper Ny

M, 8
Shear deformed damper Qq
» Iil L|A
% <
Fig. 2 A single damper model
shownin Eq. (7).
B= k(A U
-1
kb:H|i1 PLPE E ®
HEIil Eli; Elg

where, Elj4, Elj,, and El,q are the bending stiffness of the two connecting members and the damper.

All the dampers are assumed to be effective only inthe X0Z plane of theloca coordinate system shown in Fig. 2. This
means that  the forc&s?i, VJ dong withyaxiad direcion ae zeo and the  bending

M., M, I\sz about the X and Z axes are zero. The forces at nodesi and j of the damper in the local

Zi X ?

moments I\W

Xi?

coordinate system can be calculated by Egs. (9) and (10).

X; = —Ng, Z, =-Qy, I\Wyi =1,Q, - B ©

X; =Ny, Z,=Q,, 5 =1.Qs +B (10)

J J
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CALCULATION OF DAMPER FORCE AT THE NEXT STEP

A series connected elagtic springs have to be considered in dl of these damper systems. Figs. 3(a), (b), and (c) show the
models of three typica different dampers: a hysteretic damper, aviscous fluid damper, and a viscoe agtic damper.

Damper forces are usudly cdculated from the hysteretic model of the damper materials. Different types of dampers, of
course, have different hysteretic models A bilinear modd is usudly used for the hysteretic dampers, an dliptica
hysteretic modd is usualy used for the viscous fluid damper, and a complicated non-linear dliptical hysteretic model
with inclined axes relying on the temperature and frequency is usualy needed for the viscoelastic dampers. Three
different models shown in Fig. 3 with elastic connecting membersto the damper have to be considered.

(1) Hysteretic damper (Fig. 3(a))

The dtiffness of the dastic connecting spring is denoted by k., the elagtic stiffness of the hysteretic damper by k. and the
second stiffness of the damper by k,. Then, the hysteretic model of the combined connecting member and hysteretic
damper is dill a bilinear shape. The eagtic stiffness and the second giffness after yielding of the combined damper
system are given by Eq. (11).

k k

- c e - c P
Sde kC + ke ' Sdp kC + kp (11)

The damper force at time step t+At is obtained by Eq. (12) where the deformation of the damper & iS predicted by Eq.
4.

— Dsde5d,t+m (Jd,tmt < 5dy)

Faen = 12
e %:dy + Sdp (5dyt+At B 6dy) (6d,t+At > 6dy)

member dam per
Fq Fy

Ke
<A~ 5 5 =
kC k

(a) Hysteretic damper with series connecting member

Fd Fd kp
Comnecting  Hysteretic Vk
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(b) Viscous damper with series connecting member

N Viscoelastic
Camgns S YV e
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(c) Visco-elastic damper with series connecting member

Fig. 3 Damper system with connecting member
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(2) For theviscousoil damper (Fig.3(b))

The deformations of the connecting member and the viscous damper are assumed to be & and &, repectively. The
differentid equation governing the relationship of force and deformation is expressed by Eqg. (13).

cF, +k.F, = ck 0, (13

where, k. isthe stiffness of the connecting member, ¢ is the damping coefficient of the viscous damper, and Fqand & are
the force and deformation respectively of the combined damper system.

In thetime integration, the damper force Fy at time step t+ At can be obtained from the results of previous step t by Eq.
(14).

— c At o T/c
Fd,t+At =€ ! (Fd,t + kcL f’g‘(.[)ekC : dT) (14)

If the time increment At used in the time integration is sufficiently small, the velocity fA(T )during the At can be

considered asa constant and taken out of the integration. Therefore, F, 1+t CaN be solved from Eq.(14) and expressed by
Eq. (15).

_ o) -5 )
Fioon = Fy € ket/c Cd'“z—td't(l_ e kcAt/c) -

(3) For theviscodagtic damper (Fig.3(c))

The viscoelastic damper with eastic connecting members is modelled as shown in Fig. 3(c). The relaionship between
force and deformation can be expressed in the form of Eq. (16).

CF, + (k. +k)F, =ck.0, +k ko, (16)

Integrating Eq. (16) fromtimet to t+At, the damper force at time t+At can be obtained by Eq. (17).
(k. + t . k . O
Foga =€ (koo E:d,t +LA El(céd (1) + kc?éd (T)%(kc k)”chH 17)

If the deformation &(t) of the damper at time increment At is assumed to be alinear function, the damper force at time
t+ At can be expressed by the state varidbles at timet. The caculaion formulaisgiven by Eq. (18).

— —(k.+k)at/c k.Kk ( (k. +K)At/c )
Fd,t+At_e Fao t < 5d,t+At € 6d,t

"k +k
(18)
+ CEKk:. > é (6d,t+AAt_ 6d,t)(1_ e—(kc+k)At/c)

If the stiffness k of the viscodlastic damper is very smal compared to the stiffness k. of the connecting member, the value
of diffness k can be taken as 0. Thus, Eq. (18) can be reduced to Eg. (15) which is the formulation of a viscous fluid
damper with a connecting member. On the other hand, if the stiffness k; of the connecting member is infinitdy large
compared with the stiffness k of the viscodagtic damper, Eq. (18) can be reduced to Eq. (19) which is the formulation of
the Kevin modd for the viscoelastic material.
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5d,t+At - 5d,t

9
At o

Fd,t+At = kéd,t+At +C

(4) Cumulative defor mation of a damper

The cumulative deformation or itsratio is usualy used to estimate the damage extent of ahysteretic damper. 1t should be
noted that a damper deformation must be subtracted from the deformation of the connecting member. Therefore, the
cumulative deformation of adamper should be calculated by Eq. (20).

5 =5  -Fd

,max d,max 1,
p kc

(20

CONCLUSIONS

This paper proposed a raional dynamic analysis procedure for a three dimensional elastic frame structure incorporating
with a damper system which is caled as damage controlled structure. The characterigtics of the proposed procedure are
that the dadtic part of the globa giffness matrix contributed by the primary structure remains on the left side of the
dynamic equation, and theinelagtic or non-linear part contributed by the damper system is expressed in the form of force
and moved to the right Sde of the dynamic equation. The advantages of this transformation are: (1) the global
transient stiffness matrix does not need to be re-established during the step by step computation; (2) to avoid the
transient stiffness of damper element becoming too large or too small which will cause the numerical
computation unstable; (3) it is easy to treat numerically various newly developed damper systems as long as the
relationship between force and deformation are given. Some caculation formula of damper force from the damper
deformation for three typica damper systems were also derived.
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