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SUMMARY

After the 1994 Northridge and 1995 Kobe earthquakes, a large number of brittle beam-to-column
connection fractures were discovered in steel frame buildings. Impact of connection fractures on
the performance of buildings against future earthquakes has since become a serious concern. Wang
and Wen [1998] have developed a connection-fracture hysteresis model for investigation of
structural performance. To account for the effects of flexible diaphragms, bi-axial interaction,
torsional motion, and partial column failure, a 3-D inelastic structural model based on the member
hysteresis model was developed. Numerical studies show that for response evaluation of strong-
column, weak-beam steel buildings, conventional shear-beam model assuming rigid diaphragms
may serially underestimate the response. It is also found that response increase caused by
connection fractures per se is moderate.  Connection fractures coupled with biaxial interaction and
torsion, however, can lead to large increases in structural responses. Partial column damage causes
only moderate increase in structural response. It may explain the fact that although some column
damages were found in steel buildings after recent earthquakes, very few collapsed.

INTRODUCTION

After the 1994 Northridge and the 1995 Kobe earthquakes, many connection brittle-fracture failures have been
found in welded steel moment frame buildings. The test results of steel connections, e.g., from the US SAC Steel
Project, have verified the post-earthquake field survey results and shown a large variability in the load-carrying
capacity of these connections. Although very few steel structures collapsed, impact of connection fractures on
the performance of buildings against future earthquakes remains a serious concern. There is a need to investigate
whether a large number of such structures in high seismicity areas have enough reserve strength to survive future
earthquakes.

Earthquake excitations and building responses are 3-dimensional in nature.  Torsional motions and bi-axial
interactions may become significant, causing considerable amplification in structural response. To examine such
effects due to brittle beam-column joint failures, a 3-D building structure model is developed based on the
connection-fracture hysteresis model of Wang and Wen [1998]. Floor diaphragms are assumed rigid in plane but
flexible out-of-plane, which prohibits in-plane shear distortion and axial elongation but permits out-of-plane
bending deformation. Inelastic yielding is assumed to be confined to discrete hinge regions located at the
structural member (beam and column) ends. P-∆ effect is considered following Wilson and Habibullah [1987].

Response analyses of a two-story and a three-story steel moment-resisting buildings at Los Angeles, California
subjected to ground motions of the SAC Phase 2 project are carried out. Effects of rigid-diaphragm assumption,
bi-axial excitation, torsional motion, and partial column damage are investigated.
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MODELING OF ASYMMETRIC MULTI-STORY BUILDINGS

Buildings are 3-dimensional structures. A structure of regular, symmetric configuration and uniform mass
distribution in the building plan may be modelled as two-dimensional frame structure. Bi-axial structural
interaction and/or torsional oscillation, however, may become significant as a result of bi-axial excitation and/or
structural irregularity.  Under such circumstances, two-dimensional models are no longer adequate. A commonly
used simplifying assumption in 3-D model for asymmetric multi-story buildings is that the floor diaphragms and
beams are rigid so that plastic deformation can occur only in the columns [e.g., Yeh and Wen 1989]. Most recent
design procedures, however, encourage strong-column, weak-beam (SCWB) systems to prevent inelastic
deformations in the columns. Girder flexibility and moment-resisting capacity is also a necessary consideration
in realistic modelling of the effects of connection fractures.  For building structures under earthquakes, lateral
deflections usually dominate, causing large concentrated stresses in the beam-column joint regions. Therefore, in
this study the girder flexibility will be considered and inelastic deformation is assumed to concentrate at column
and girder ends and modelled by discrete inelastic hinges.

Equations of Motion

Consider an asymmetric multi-story building with mass eccentricity. Each floor diaphragm, of mass Mi  and
moment of inertia Ii , is assumed rigid in its own plane but flexible out-of-plane. Therefore the motion of the
diaphragm at each floor level can be characterized by 3 degrees of freedom (DOF) in its own plane, i.e.,
translations in the X and Y directions, plus a rotation about the vertical axis. The floor diaphragms are flexible
out-of-plane. At the column ends, two rotational DOF’s are required. Hence if the axial deformation of members
is neglected, the vector of structural (global) response DOF’s is given by
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ground rotation is neglected, the rotational acceleration of the ith floor is θu . The equations of motion for the

ith-floor diaphragm can therefore be expressed as
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where ij
xS and ij

yS are the shears of the jth column on the ith floor; UijS ,
θ denotes the torsional resistance of

column j on the ith floor to its upper floor; BkiS ,)1( +
θ  is the torsional resistance of column k on the (i+1)th floor to

its lower floor; iNδ  is the Kronecker delta; and N is the total number of floors. It is further assumed that inertial

resistance to rotation at column-end nodes can be neglected, thereby in dynamic analysis the rotational DOF’s at
the column-end nodes can be eliminated by static condensation. The equations of motion for the building
structure are derived as follows:

gsa uMSTuM −=+ (3)

in which M is the lumped-mass matrix including the masses and rotational moments of inertia of floor
diaphragms; gu  is the vector of ground accelerations; S is the vector of column-end shears; sT is the matrix that

sums the column-end shear forces acting at a particular floor diaphragm, as well as the torsion induced by those
shear forces. Note that damping forces, which have not been included, will be added later.
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Discrete Inelastic Hinge Model

The bi-axial interaction effect is generally negligible in beams, whereas it may be significant in columns.
Therefore, it is assumed that only one inelastic hinge can form at each beam end and two at each column end.
Those deformations constitute a vector of hinge rotations h. The rotational deformations of hinge elements at a
joint are generally different from one to another.  A member-end rotation at a joint is equal to the joint rotation
minus the rotation of the connecting plastic hinges. Thus, the vector of member-end forces is expressed as
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in which z is the inelastic component of hinge rotation; S = column-end shears; R = member-end moments at
ends without hinges; and H = moments at hinged member-end; the two stiffness matrices in the square brackets
relate the member-end forces to the global and hinge displacements. By equilibrium, the member-end moments
H should be equal to the hinge-element moments, i.e.,

zKhKH ze += (5)

where eK  and zK  are the elastic and inelastic stiffness matrices of hinge moments. Since rotational masses at

joints are neglected, rotational equilibrium at joints may be expressed in terms of only the member-end moments
as follows:
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where the matrix RT  sums up the end moments present at a particular joint. Defining the following variables,
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and from Eqs.(3)–(6), one obtains
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If Rayleigh damping is assumed and has the following form
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in which 0a  and 1a  are proportionality constants, one obtains the equations of motion including damping as:
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Note that to solve Eq. (11), the inelastic moment-rotation relationship is needed.  The smooth hysteretic model
by Wang and Wen [1998] is used for this purpose, which has been shown to reproduce well test results of brittle
connections. One can then solve numerically for the displacement and hinge rotation (elastic and inelastic)
vectors, au , h, and z, and their associated derives for given initial conditions to obtain the response time history.

NUMERICAL EXAMPLES

A two-story and a three-story steel building, shown in Fig. 1, are designed in compliance with the practice before
Northridge earthquake.  According to the code provisions for accidental torsion, a 5% offset of the mass centers
from the geometrical centers is assumed. The first three vibration periods of the two-story building with flexible
floor diaphragms, are 0.615 (Y), 0.498 (X), and 0.310 seconds (torsion). For the three-story building, the periods
are and 0.851 (X), 0.845 (Y), and 0.495 seconds (torsion). The damping ratios of the first two modes are
assumed to be 2%. The degradation parameters in the smooth hysteretic model, A, ν, and η are 0, 0.02, and 0.1,
respectively [Wang and Wen 1998]. P-∆ effects are taken into consideration.

Material uncertainties are considered by assuming that the yield stress of steel yF  is log-normally distributed

and the plastic moduli of member cross-sections xZ  and yZ  are normally distributed random variables

[Kennedy and Baker 1984]. For A36 steel (beams) and Grade 50 steel (columns), the mean values of yF  are

assumed to be 282 MPa and 345 Mpa, respectively. Both have a coefficient of variation of 0.0848. The bias
(ratio of mean to nominal) of plastic moduli has a mean value of 0.99 and a coefficient of variation of 0.0396.
The connection capacity against fracture under random loads is modelled by the Park and Ang [1986] damage
index, assumed to be uniformly distributed between 0.1 and 2.3 [Wang and Wen 1999] based on limited
available test data and statistically independent from one connection to another.  Fracture is assumed to occur at
beam bottom-flanges only.  Uncertainty in reserve strength of fractured columns is accounted for by reducing the
cross-sections moments of inertia to 0 to 100% of their original values, uniformly distributed.

Effect of Flexible Diaphragms

Since a large number of pre-Northridge designs were of strong-column, weak-beam type, the assumption of rigid
diaphragms becomes questionable. It is of interest to study the impact of diaphragm flexibility. The first three
structural periods of the two-story building with rigid diaphragms are 0.396(Y), 0.338(X), and 0.207 seconds
(torsion).  SAC-2 ground motions of high intensity for Los Angeles, California [LA27 (fault-normal) and LA28
(fault parallel), shown in Fig. 2] are used as excitations. The maximum responses of the building with rigid and
flexible diaphragms are listed in Table 1.  The maximum column drift ratio (MCDR) is used as the measure of
structural performance.  It is defined as the maximum value among all column drifts, each is the maximum value
of the vector sum of drift ratios in the two orthogonal directions throughout the time history. The response
histories of the 1st-floor mass center are also shown in Fig. 2. One can readily see the effects of structural period
lengthening and, in this case, amplification in responses and permanent displacements due to the flexibility of
the diaphragms. It is seen that rigid diaphragm assumption for strong-column, weak-beam steel buildings may
significantly underestimate the structural responses.

Effects of Bi-axial Excitation, Torsional Motion, and Column Damage

To cover a wide range of excitation intensity and at the same time to reduce record-to-record response variation,
the median response are calculated under the suites of SAC-2 ground motions for Los Angeles, California [SAC
1997] at three probability levels, 50%, 10%, and 2% probability of exceedance in 50 years. To consider the
effects of bi-axial excitation, torsional motion, and column damage on structural response, the following seven
cases are investigated:

1. Ductile, 1-Dimensional (D1D): ductile connections (no fracture); only the fault-normal component of
ground motion is applied in the weak principal direction of the building.
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2. Brittle, 1-Dimensional (B1D): same as Case D1D except connections are brittle.

3. Ductile, No Torsion (DNT): ductile connections; fault-normal and fault-parallel components are applied
along the weak and strong directions, respectively of building.; accidental torsion is neglected.

4. Brittle, No Torsion (BNT): same as Case DNT except connections are brittle

5. Ductile, with Torsion (DT): same as Case DNT except a 5% accidental torsion is considered also.

6. Brittle, with Torsion (BT): same as Case DT except connections are brittle

7. Brittle, with Column fracture and Torsion (BCT): same as Case BT; besides, a column connected to any
fractured beam connections at its upper end is assumed damaged too.

The structural performance is again examined in terms of MCDR. The median values and coefficients of
variation of MCDR's of the two buildings considering the seven cases are tabulated in Tables 2 and 3. The 50-
year probability of exceedance of the median MCDR is plotted in Fig. 3.

The results can be summarised as follows:

•  Comparing the cases with and without connection fractures, (D1D vs. B1D, DNT vs. BNT, and DT vs.
BT), the differences in responses are small. In case BT where both fracture and torsion are considered,
only 9% of the connections in the 2-story building, and 19% in the 3-story building fracture in a 2% in
50 years hazard [Wang & Wen 1998]. This indicates that when fractured connections have some
residual strength and percentage of fractured connections is not a high, a structure still has adequate
resistance against seismic loads.

•  Bi-axial excitation by itself does not cause significant response increase in the 2-story building, as can
be seen by comparing the MCDR of case D1D with DNT and B1D with BNT. Bi-axial excitation
coupled with accidental torsion, however, causes a significant increase in response. Comparing the
MCDR between case DNT (3.744) and DT (4.308), BNT (3.871) and BT (4.543) at the 2% probability
level, the increases are 15.1% and 17.4%, respectively. It shows that torsional oscillation plays an
important role in structural response.

•  Bi-axial excitation causes significant increase in response of the 3-story building. At 2% probability
level, comparisons of the MCDRs of D1D (3.605) and DNT (5.735), B1D (3.649) and BNT (5.794) ,
show an increased of about 60%. One contributing factor is that the 3-story building has same vibration
periods in the two principal directions, therefore, is susceptible to bi-axial interactions and torsional
motions. Such frequency-dependent effects of bi-axial interaction, therefore, need to be considered in
structural design.

•  Partial column fractures in addition to connection failures cause moderate response increase in the 3-
story building, whereas they cause insignificant increase in the 2-story building. It can be attributed to
the fact that the three-story building has a higher percentage of columns with damage.

•  The moderate response increase caused by partial column fractures (no total failure) may explain the
fact that although column damages were found after earthquakes, very few collapsed. Reserve strength
of damaged structure members, therefore, plays a pivotal role in collapse prevention.

CONCLUSIONS

Methods of modelling and response analysis are developed for pre-Northridge low-rise steel buildings with
connection fractures. Inelastic yielding is assumed to be confined to discrete hinge regions located at the
structural member (beam and column) ends. The hysteresis of inelastic hinges is modelled by a smooth
connection-fracture hysteresis model.  A 3-dimensional model of building structures was developed to account
for the effects of bi-axial interaction and torsional motion due to yielding and connection fractures. It
successfully models the seismic 3-D response behavior of strong-column weak-beam (SCWB) buildings.
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Based on the numerical results of a two-story and a three- story steel building under SAC-2 ground motions, it is
found that for SCWB steel buildings, shear-beam models assuming rigid diaphragms may significantly
underestimate the responses. Also, torsional oscillation and bi-axial interaction due to bi-axial excitation can
cause large increase in the response.  Response increases caused by connection fractures per se are only
moderate by comparison. Therefore, these 3-D motions deserve careful consideration.  Finally, partial column
damages due to connection failures cause only moderate increase in structural response. It may explain the fact
that although partial column damages were found in many buildings after recent earthquakes, very few
collapsed.

ACKNOWLEDGMENTS

This study is supported by the National Science Foundation, USA, under grants NSF CMS-95-10243, SBC-
SUNY 95-4102C, and CMS 97-01785COOP.

REFERENCES

Kennedy, D.J.L. and Baker, K.A. (1984). “Resistance factors for steel highway bridges.” Canadian J. Civ.
Engrg, 11, 324–334.

Park, Y.J., Wen, Y. K., and Ang, A. H-S. (1986). “Random vibration of hysteretic systems under bi-directional
ground motions.” Intl. J. Earthq. Engrg. and Struct. Dyn., 14, 543–557.

SAC Steel Project. (1997). “Development of ground motion time histories for phase 2 of the FEMA/SAC steel
project.” Rep. No. SAC/BD-97/04, Sacramento, California.

Wang, C.-H. and Wen, Y.K. (1998). “Modeling of fractured beam-to-column joints of steel buildings,” Proc.
Current earthquake engineering research in the central United States, I-9–I-16.

Wang, C.-H. and Wen, Y.K. (1998). Reliability and redundancy of pre-Northridge low-rise steel buildings under
seismic excitation. UILU-ENG-99-2002, SRS No. 624, Dept. of Civil and Environmental Engineering, Univ. of
Illinois, Urbana, Illinois.

Wilson, E. L. and Habibullah, A. (1987). “Static and dynamic analysis of multi-story building, including P-Delta
effects.” Earthq. Spectra, EERI, 3, 2, 289–298.

Yeh, C.H. and Wen, Y.K. (1989). Modeling of nonstationary earthquake ground motion and bi-axial and
torsional response of inelastic structures. SRS No. 546, Dept. of Civil Engineering, Univ. of Illinois, Urbana,
Illinois.

Table 1: Comparison of  maximum column drift ratios

Case X(%) Y(%) MCDR(%)
Rigid 3.012 1.125 3.106

Flexible 4.664 4.023 4.936



08147

Table 2: Medians and coefficients of variation of MCDR (2-story building)

50% in 50 years 10% in 50 years 2% in 50 yearsCase
Med.(%) COV Med.(%) COV Med.(%) COV

D1D 1.059 0.665 1.868 0.335 3.612 0.493
B1D 1.069 0.696 1.900 0.341 3.757 0.505
DNT 1.152 0.621 1.968 0.326 3.744 0.469
BNT 1.160 0.626 2.014 0.339 3.871 0.474
DT 1.229 0.602 2.198 0.349 4.308 0.513
BT 1.240 0.608 2.269 0.383 4.543 0.505

BCT 1.240 0.639 2.215 0.368 4.704 0.596

Table 3: Medians and coefficients of ariation of MCDR (3-story building)

50% in 50 years 10% in 50 years 2% in 50 yearsCase
Med.(%) COV Med.(%) COV Med.(%) COV

D1D 1.085 0.504 1.905 0.293 3.605 0.460
B1D 1.104 0.509 1.922 0.281 3.649 0.497
DNT 1.400 0.393 2.601 0.454 5.735 0.486
BNT 1.398 0.392 2.613 0.437 5.794 0.531
DT 1.485 0.398 2.808 0.398 5.881 0.486
BT 1.490 0.394 2.782 0.384 6.035 0.523

BCT 1.513 0.410 2.832 0.383 6.604 0.547

-1.5

-0.75

0

0.75

1.5
LA27

0 5 10 15 20
-1.5

-0.75

0

0.75

1.5

A
cc

el
er

at
io

n 
(g

)

LA28

-14

-7

0

7

14
Rigid

-14

-7

0

7

14
Flexible

D
is

pl
ac

em
en

t (
cm

)

(a) SAC ground accelerations. (b) Lateral displacement in X-direction.

-20

-10

0

10

20
Rigid

-20

-10

0

10

20
Flexible

D
is

pl
ac

em
en

t (
cm

)

-5.0

-2.5

0.0

2.5

5.0
Rigid

-5.0

-2.5

0.0

2.5

5.0
Flexible

R
ot

at
io

n 
(r

ad
),

 ×
 1

03

(c) Lateral displacement in Y-direction. (d) Rotation.

Figure 1: SAC ground motions and displacements of 1st-floor mass center of the two-story building.
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Figure 2: Steel moment frame buildings
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Figure 3:  50-year probability of exceedance of median maximum column drift raito (MCDR)
 at Los Angeles, California.


