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ANALYSIS OF A NON-PROPORTIONALLY DAMPED BUILDING STRUCTURE
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SUMMARY

If energy dissipating devices, such as base isolators, viscous or viscoelastic dampers, are added to
a structure, it turns to so called a nonproportional or a nonclassical damping system, and cannot be
analyzed by the efficient mode superposition method based on real valued eigenvalues and mode
shape vectors. Although direct integration method provides exact solution for the nonproportional
damping system, the time and memory space required for the analysis prevent the method from
being used for a practical application. In this research, a non-proportionally damped structure with
added viscoelastic dampers are analyzed for earthquake excitations by the complex mode
superposition method, and the results are compared with those obtained from the approximate
methods such as the direct integration method with matrix condensation, modal strain energy
method, and the method neglecting the off-diagonal terms of the transformed damping matrix.

A complex frequency response function is derived for the analysis of a nonproportionally damped
structure in a frequency domain. The Kanai-Tajimi ground acceleration spectrum is used to obtain
root mean square displacements of the model structure and to verify the effectiveness of the
viscoelastic dampers in frequency doamin.

According to the results, the complex mode superposition, with the advantage of using only a few
dominant modes, turn out to be very efficient procedure of analyzing the nonproportionally
damped structure added with viscoelastic dampers. The direct integration method combined with
the matrix condensation technique also provides seismic responses with a reasonable accuracy. It
is also found that the discrepancy between the exact solutions and the results from the approximate
methods increases as the damping contributed by the addition of viscoelastic dampers increases,
and as the dampers are non-uniformly placed.

INTRODUCTION

In the analysis of a structure installed with viscoelastic dampers the modal strain energy method has been
generally applied to predict the equivalent damping ratios of the system [Lai et. al., 1995]. The method derives
the equivalent damping ratios based on the assumption that the damping is proportional to mass and/or stiffness
of the structure system. However the assumption of proportional damping may no longer be valid when the
viscoelastic dampers are added to the structure. In this case the direct integration method provides the correct
results, but it requires too much computation time and memory space to be applied in practice. There is,
however, a reliable alternative procedure for the analysis of the nonproportionally damped structure; the complex
mode superposition method which provides exact solution in less time then needed for the direct integration.
Compared with the direct integration method, the complex mode superposition has several advantages not only
for the efficiency of response evaluation but for the understanding of the modal characteristics of the
nonproportionally damped structures.

In this study some of efficient analytical procedures are applied to obtain the seismic response of a
nonproportionally damped building structure with added viscoelastic dampers; the complex mode superposition
method, direct integration method combined with matrix condensation, modal strain energy method, and the.
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method disregarding the off-diagonal terms of a transformed damping matrix. Special attention has been paid for
the derivation of the complex modal superposition procedure, and the reliability of the approximate methods is
checked by comparing the approximate solutions with those obtained from the complex mode superposition.

The dynamic behavior of viscoelastic dampers is represented by the Kelvin-Voigt model, in which a spring and a
dashpot are connected in parallel. Although more accurate methods of analytical modeling exist, such as based
on Boltzmann's superposition principle [Shen et. al., 1995] or on fractional derivative constitutive relationship
[Tsai, 1994], they may not be applied on the analysis of large scale structures for their huge computational
demands.

With this spring-damper idealization the dynamic system matrices of the structure with added viscoelastic
dampers can be obtained by superposing the damper properties to the stiffness and damping matrices of the
structure:

ds CCC +=                                                                              (1)

ds KKK +=                                                                             (2)

where sC and dC  are the damping matrices of the structure and the added dampers, respectively, and sK and

dK are stiffness matrices of the structure and the dampers, respectively.

EFFICIENT ANALYSIS IN TIME DOMAIN

Complex Mode Superposition Method

The general expression for a dynamic equilibrium equation is

pKu uCuM =++                                                                         (3)

Where M , C  and K  are the mass, damping, and stiffness matrices of the structure, respectively, and u , u ,
u are the displacement, velocity, and acceleration vectors of the response, respectively. Also p  is the load

vector. For a nonproportional damping system, the general approach to solve the above equation is to
reformulate it into the first-order 2n-dimensional equation [Veletos et. al., 1986]:
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The above 2n-dimensional equation is normally expressed by the following simple form:

fByyA =+                                                                              (5)

The solution of the first-order equation can be obtained by the Laplace transform method:
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where mp is the eigenvalue of the mth mode. Finally, displacements in the physical coordinates can be obtained

by the following transformation:

)y( )u( jj tt Φ=                                                                            (7)
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Modal Strain Energy Methods

The modal strain energy method (MSE method) conveniently predicts the equivalent modal damping ratios of
structures with added viscoelastic dampers through the following equation [Lai et. al., 1995]:
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where iξ and dη are the damping ratio of the structure in the ith mode and the loss coefficient of the damping

material, respectively, and dK is the stiffness matrix contributed from the dampers. Also, iω and i¥õare the

natural frequency and the mode shape vector of the ith mode, respecticely, and cξ is the damping ratio of the

structure itself. The above equation is transformed from its original form to take into account the inherent
damping of the structure.

There is another simple but approximate procedure of solving nonproportional damping problems, which is to
carry out the mode superposition analysis after neglecting the off-diagonal terms of the damping matrix. In this
way only the diagonal terms participate in the analysis.

Direct Integration with Matrix Condensation

To reduce the number of degrees of freedom and the computation time for direct integration, two techniques are
applied; rigid diaphragm assumption and the matrix condensation method. In this study the in-plane DOF's of all
the nodal points located on the floors are condensed to the three DOF's representing two translational and one
rotational degrees of freedom as described in Figure 1.
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                              Figure 1: Efficient modeling procedure

The normal procedure for matrix condensation is followed [Paz, 1991], except that the condensed damping
matrix of the structure is obtained from the condensed mass and stiffness matrices using the Rayleigh damping
method:

*
s

*
s

*
s ¥â¥á KMC +=                                                                         (9)

where M* and K* are the condensed mass and stiffness matrices. Finally the condensed damping matrix of the
combined system of the structure and the added viscoelastic dampers is obtained by the superposition of the two
condensed matrices:

*
d

*
s

* CCC +=                                                                            (10)

where *
dC is the condensed damping matrix contributed from the dampers.

The final expression of the equation of motion of the condensed system is
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******* puKuCuM =++                                                                  (11)

The above equations are directly integrated using the average acceleration method in time domain to obtain the

responses. As the degrees of freedom are greatly reduced as a result of the rigid diaphragm assumption and
matrix condensation, the analysis is expected to be carried out more efficiently.

ANALYSIS IN FREQUENCY DOMAIN

For nonproportional damping systems, the response spectrum analysis may not be applicable because the modal
participation factors, which determine the contribution of each mode of a proportional damping system to the
response, cannot be similarly defined. In this sense it is worthwhile to investigate the behavior of the
nonproportionally damped structure subjected to a generalized stationary random ground excitation through the
root mean square response obtained in the frequency domain. Igusa et. al. [1984] developed an analytical
procedure based on the modal decomposition process to obtain a stationary response of a nonproportionally
damped system subjected to a stationary base input. In this study the procedure is developed by deriving the
complex frequency response function to analyze a three dimensional building structure with added viscoelastic
dampers.

The complex frequency response function can be derived from the unit impulse response function, which in turn
can be obtained from the mth modal response in time-domain. Thus, from Eq. (6), the unit impulse response
function is defined as follows:
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The complex frequency response function of a nonproportionally damped system can be derived from the
Fourier transform of the unit impulse response as follow:
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The above equation is reduced to the following form after some manipulation:

)(

1
)(

mm
m s¥øia

¥øiH
−

=                                                                    (14)

The power spectral density function of the response can be expressed as follows:

∑∑ −= )()()() ( ¥øS¥ø iH¥ø iH¥øS
nm ppnmqnqmq φφ                                                (15)

where )(ωSq  is the power spectrum density function of the qth degree of freedom response, qmφ is the qth

component of the mth mode vector. )( ωiH m −  is the complex frequency response function of the mth mode

response, and )( ωiH m  is the complex conjugate. Also )(ω
nm ppS  is the cross spectral density function of modal

load mp and np .

The root mean square (RMS) value of the response can be obtained from the power spectrum density function of
the response as follows:

∫
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In this study the earthquake ground acceleration is assumed to be a stationary random process with a zero mean
with the power spectral density function given by the following Kanai-Tajimi spectrum:
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where gζ , gω  and 0S  are the predominant damping coefficient, characteristic ground frequency, and intensity

measure. The intensity measure, 0S  can be related to the PGA of the earthquake records based on the following

relation [Shinozuka et. al., 1990]:

0)]2
2

1
([ SpPGA g

g
gg ζ

ζ
πω +=                                                           (18)

where the peak factor, gp  is assumed to be 3.0, which is empirically obtained [Shinozuka et. al., 1990]. The

power spectrum density function of force can be obtained by multiplying mass to the above acceleration
spectrum, and the above two sided spectrum can be transformed to the one sided one by multiplying two. Finally

the power spectrum density function of seismic loads )(ω
nm ppS  can be formulated as follows

∑∑=
i j

jiaapp mmSS
ggnm

)(2)( ωω                                                           (19)

where im  represents the mass in ith nodal point associated in the direction of the load.

NUMERICAL RESULTS

One-bay ten-story building structures shown in Figure 2 are analyzed to compare the responses obtained from
the complex mode superposition method and from the approximate methods. Viscoelastic dampers are added to
the diagonals of each story in the direction of the load. In structure A identical dampers are located on every
floor. The shear area of the damping material is doubled in structure B. In structure C the dampers are located
only in the lower half stories of the structure. The masses are lumped to each joint and six degrees of freedom
(three displacements and rotations along the three perpendicular axes) are considered per node. The first and the
second modal damping ratios of the structure without added dampers are assumed to be 1%. The member
properties of the model structure and the material properties of the damping materials used in the analysis are
based on Zhang et. al. [1989] and they are listed in Table 1 and Table 2, respectively.

Table 3 shows the modal damping ratios obtained from the complex mode superposition method (CMS) and the
approximate method, such as modal strain energy method (MSE) and the method that disregards the off-diagonal
terms of the damping matrix (APR). According to the results, the error is larger in the MSE method than in the
APR method. It also can be noticed that the error grows larger when the dampers are located in the lower half
stories of the structure.

The same trend can be found in the top story displacement. Figure 3 through Figure 4 shows the time history of
the top story displacements caused by the El Centro S90W(1940) earthquake excitation, obtained from the four
different analysis methods. It can be seen that the results from the direct integration with matrix condensation
(DIC) are very close to the exact solution obtained from the complex mode superposition. It also can be observed
that the results provided by the APR method are closer to the exact solution than those obtained by the MSE
method. Also the error increases as the dampers are not placed uniformly through the height. It should be noted
that the results provided by the approximate methods forms the lower bound of the exact solutions, mainly
because of the prediction of the higher modal damping ratios.



0907
6

    Table 1: Member properties of the model structure

Beams ColumnsStory
A (cm2) I (cm4) A (cm2) I (cm4)

10 143 47800 163 34500
9 143 47800 163 34500
8 143 47800 210 58500
7 143 47800 210 58500
6 143 47800 291 91500
5 218 126100 291 91500
4 218 126100 356 117900
3 218 126100 356 117900
2 218 126100 405 118300
1 218 126100 405 118300

       Table 2: Properties of viscoelastic material

Model G′ (ton/m2) G′′  (ton/m2) A (cm2) t (cm)
A 2000.0
B

250.3 421.4
4000.0

2.0

            Table 3: Damping ratios of the primary mode obtained from various analysis methods (%)

STRCTURE MSE(error, %) APR(error, %) CMS
A 31.8(25.7) 28.0(10.7) 25.3
B 43.0(52.5) 34.8(23.4) 28.2
C 22.4(135.8) 14.1(48.4) 9.5
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Figure 3: Top floor displacements of structure A
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Figure 4: Top floor displacements of structure C
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In the frequency-domain analysis, analyses are performed only for the structure A. Three values of the intensity
measure, 0S , are obtained from the PGA of the earthquake records of El Centro (S00E, 1940), Taft (N21E,

1952), and Okland City (N26E, 1957), and are listed in Table 4. The predominant damping coefficient, gζ  and

the characteristic ground frequency, gω  used in Eq. (17) and Eq. (18) are taken to be 28.3rad/sec and 0.6,

respectively, which are obtained from firm soil condition [Shinozuka et. al., 1990].

According to the Figure 5, the Kanai-Tajimi spectrum has the largest amplitude around the frequency content of
25rad/sec. In contrast, the peak of the power spectrum of top story displacement moves to around 7�9rad/sec, as
shown in Figure 6, reflecting the filtering effect of the structure. The frequency that the peak of the power
spectrum occurs moves from around 7rad/sec for no damper case to around 9rad/sec for the case that the
dampers are installed on every floor, implying that the stiffness of the structure has increased due to the dampers.
Also it can be noticed that the amplitude of the peak decreases significantly, verifying the effectiveness of the
dampers. The comparison of the RMS values shown in Table 5 demonstrates the effectiveness more clearly; the
RMS displacement is reduced about 85% when the dampers are added to the structure. For comparison, Table 6
shows the RMS responses obtained from the time history analysis, which matches reasonably with the results
obtained from the frequency analysis using the Kanai-Tajimi spectrum.

    Table 4: PGA and 0S  used in the analysis

PGA
S0

(cm2/sec3/rad)
El Centro 0.35g 72.32

Taft 0.16g 15.13
Okland City 0.04g 0.91

                         Figure 6: PSD for top story displacement of the structure A

Table 5: RMS top story displacements of
the structure A

S0

(cm2/sec3/rad)
RMS displacement(cm)

72.32 1.14

15.13 0.52

0.91 0.13

Table 6: RMS top story displacements of
the structure A obtained from time domain

analysis
Earthquake records RMS displacement(cm)

El Centro 0.86

Taft 0.43

Ocland City 0.05
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Figure 5: Kanai-Tajimi spectrum
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CONCLUDING REMARKS

In this study the analytical procedures of complex mode superposition method are derived in time and frequency
domain for the analysis of a simple three dimensional building structure with added viscoelastic dampers
subjected to an earthquake ground excitation. The analysis results are compared with some of efficient but
approximate techniques; such as direct integration with matrix condensation, modal strain energy method, and
the method neglecting the off diagonal terms of the damping matrix.

It is observed that for the given model structure the difference between the exact solution obtained from the
complex mode superposition method and the ones obtained from the approximate methods increases as the
amount of the added damping increases and when the dampers are not uniformly located. The main reason for
the difference is the higher modal damping ratios predicted by the approximate methods, which results in lower
bound responses.

The complex mode superposition method, although very efficient compared to the direct integration method,
requires larger computation time than needed for the conventional mode superposition method because the
degrees of freedom are doubled and the analysis is carried out in complex numbers. However, like the
conventional mode superposition, only a few predominant modes will satisfy the accuracy of the analysis, which
makes this method very efficient and most promising for the analysis of a structure with added viscoelastic
dampers. Also efficient is the direct integration method combined with matrix condensation technique. The
analytical results turn out to be quite close to the exact solution with a lot of saving in computation time.
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