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SUMMARY

An exquisite non-dimensional horizontal stiffness formula for rubber bearing is proposed.
However the extensive discussions focus on stability and lateral stiffness characteristics for
bearing-column serial system and composite isolator consisting of two rubber bearings with
different cross sections connected by rigid plate in between. All the computation formulas of
critical force and lateral stiffness are deduced on the base of engineering theory of Harings &
Gent.

INTRODUCTION

Steel plate laminated rubber bearing as an elastomeric element, is such kind of seismic isolation device with very
high anti-compression capability and low shear resistance. Usually, its vertical stiffness is hundred even over
thousand times of its horizontal stiffness. In other word, its lateral displacement is dominated by shear
deformation of rubber layers, and its critical buckling load is quite low although it likes a short column with
small slender proportion. Hence the stability of the bearing against buckling and corresponding reduction in
lateral stiffness usually should be put into account in design of base isolated structures. To estimate the buckling
load and horizontal stiffness of rubber bearing, an elastic analysis model is adopted in which the multilayer
bearing is regarded as a continuous column with bending and shear flexibility. And the analysis results of this
model are basically consistent with experimental data. Extensive studies have been conducted by Kelly [1996]
and Imbimbo & Kelly [1997] for post-buckling behavior or stability at large displacement and the influences of
end plate rotation on buckling load and horizontal stiffness of elastomeric isolator. A new non-dimensional
general expression and more delicate approximate formula for horizontal stiffness of rubber bearing was put
forward by Zhou et al [1998]. Recently we have developed relatively rigorous expression of horizontal stiffness
[Zhou et al 1999] for composite isolator proposed by Trics [1994] and a serial system of rubber and R/C column.
In this paper, a more general solution for stability and lateral stiffness of composite isolator consisting of two
rubber bearings connected each other by rigid plate, is given. The methodology of analysis is based on Haringx
[1948~49] & Gent’s [1964] engineering theory .

A PRACTICABLE EXPRESSION FOR HORIZONTAL STIFFNESS OF RUBBER BEARINGS

The horizontal stiffness KH(P) of rubber bearing, with boundary condition of one end to be fixed and the other to
be free to move in horizontal direction but restricted against rotation, can be expressed by the following form
[Zhou 1998].
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Eq. (1) can be replaced by the following approximate form proposed by Zhou [1998].
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It can be pointed out that following widely used simplified formula is adoptable only if λ≥4
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The relations between KH(p)/KH(0) and p for different value of λ given by Eq.(1) ~ Eq.(3) are shown in Fig.1. It
can be seen from Fig.1 that Eq. (1) gives good results for various values of λ. For the non-dimensional horizontal
stiffness of rubber bearing Eq.(1) is an ideal form to reflect the influence of axial compression force and easy to
prepare design diagram. In addition, it is very effective for sensitivity analysis of various parameters. Eq.(2) is a
good approximation of Eq.(1) for wide range of λ.

Fig.1 Comparison of the results from accurate formula and approximate ones
(non-dimension results)
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THE HORIZONTAL STIFFNESS COEFFICIENT OF THE LAMINATED RUBBER BEARING
ISOLATOR IN SERIES WITH R/C COLUMN

In order to increase available space and save the amounts of building materials and construction work, the
building owner and designer prefer install laminated rubber bearings at the top of R/C columns of the lowest
story rather than at the bottom of it. In such a case the rubber bearing and R/C column composite of a serial
system of seismic isolation. In bridge structures, the rubber bearing usually is installed at top of pier and also
forms a serial system. It is assumed as followings so as to deduce computation formula of the horizontal stiffness
coefficient of the rubber bearing isolator:
1) The top surface of the rubber bearing is free to move horizontally but controlled against rotation along the

two orthogonal horizontal axes by the R/C column in series with it;
2) The slender proportion of the R/C column is moderate, so that the influence of the axial force on  translation

displacement and shear deformation can be neglected;
3) The lateral deformation of rubber bearing subjected to axial and horizontal loading can be analyzed

according to the approximate theory developed by Haringx [1948~1949] & Gent [1964].
On the base of above assumptions the following expression of horizontal stiffness of the rubber bearing in the
bearing-column serial system has been obtained by Zhou et al [1999].
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and P is the applied axial compression force. The subscript b and c is representative of rubber bearing and R/C
column respectively and the meanings of other notations are obvious.

It is interesting to point out that if λ→∞, KH(0)=GsAs/h, KH(p)/KH(0) is independent of hb/hc directly, and Eq. (4)
can be simplified as follows
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For various values of γ, the KH(p)/KH(0)~ p relation can be calculated by Eq. (4) and the results are shown in
Fig.2 by solid lines. However the R/C column in the serial system will constrain the rubber behaving like a
moment spring if λ→∞, and now the serial system is just as the case of a rubber bearing with flexible end
condition at top plane as it is studied in Ref. (Imbimbo & Kelly [1997]). For the sake of comparing the accuracy
of the following approximate formula
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given by Imbimbo & Kelly [1997], the corresponding results calculated from Eq. (8) are also shown in Fig.2. As

Imbimbo & Kelley have pointed out that the numerical coefficient 12  in p of Eq. (8) can be changed into π.
Hence the calculation results from Eq. (8) are shown in Fig.2 by dotted and dashed lines respectively
corresponding to the numerical coefficient 12 or π2. It can be seen from the curves shown in Fig.2 that the results
by the approximate Eq. (8) contain somewhat difference whenever the numurical coeffient in Eq. (8) is 12 or π2.

Fig.2   The influence of rotational flexibility on horizontal stiffness of rubber bearing
( non-dimensional results)
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THE DEFORMATION PATTERN OF THE COMPOSITE ISOLATOR SUBJECTE TO LATERAL
FORCE

The composite isolator considered in this paper is made from two
single isolators that are linked together by using rigid plate with
infinitive stiffness in between (Fig.3). The low end of the composite
isolator is fixed and the upper one is free to move in horizontal
direction but restrained against rotation. Suppose a lateral force F
and vertical load P are applied on top of the isolator simultaneously,
the deformation patter of the isolator has been shown in Fig.4. Thus
the horizontal stiffness of the composite isolator KH becomes

( ) ( ) ( ) ∆ϕδδ hhhh

F
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(9)
where δ1(h1) is lateral displacement of the lower bearing, δ2(h2) is that of the upper bearing, ϕ1(h1)= ϕ2(h2) is
rotation angle of the rigid plate.

HORIZONTAL STIFFNESS OF COMPOSITE ISOLATOR

The analyses of the critical buckling load and lateral stiffness of the composite isolator are based on the
approximate theory developed by Haringx [1948~49] and Gent [1964] and the recent work by Kelly [1996] and
Imbimbo & Kelly [1997] on elastomeric bearings. This is a applied engineering theory in which the steel plate
laminate rubber bearing is regarded homogeneous elastic column with equivalent bending stiffness EI and shear
stiffness GA. According to the local coordinate system the isolated body with height within 0<x<h for each of the
rubber bearing up and down can be described in Fig.5. In case of the reaction moment M0 and shear force F are
known, the horizontal displacement δ(x) and rotation angle of cross section ϕ(x) at height x was deduced by
Imbimbo & Kelly [1997].
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From the integrative equilibrium condition of the whole composite isolator under external and generalized
reaction force the following formula can be obtained
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Substituting Eq. (10) into above equation we obtain
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which are also given by Imbimbo & Kelly [1997].

Substituting the second equation of Eq. (10) into continuous condition of ϕ1(h1)=ϕ2(h2) the second equation for
determination of M01 and M02 is attainable as follows
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If the lateral force F=0, the above Eq.(13) and Eq. (14) turn into
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Let the determinant of the matrix of the coefficients of Eq. (12) and Eq. (14) equals zero, the equation of critical
buckling force is obtained below
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Compared with the corresponding critical force equation of composite isolator without rigid plate given by
Imbibe & Kelly [1996] and Zhou et al [1999], Eq. (16) involves an additional term related to h∆.

If F≠0 the M01 and M02 can be obtained from general solution of Eq. (12) and Eq. (14) and then substituting them
into Eq. (10), the formula of δ1(h1), δ2(h2) and ϕ1(h1) can be obtained, and finally the horizontal stiffness of the
composite isolator is attainable by using Eq. (9). Introducing follow non-dimensional variables
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and performing simplifications the following non-dimensional horizontal stiffness is given

( )
( ) ( )[ ] ( )( ) 211121213

2121122211

cossin1cos2sincos1sin2

sinsincossincossin

0 pppppp

pppppp
q

K

pK

H

H

ΨζΨζΨ
ζΨΨΨΨ ∆

++−+−+
−+

=  (17)

where

( ) ( ) ( )























+++++++

+
++= ∆∆ ζζζζζζζξ

ξ
ζ

ξζ
η

ξ
ζ

η
1125.114

12
1 2

42

b
bbs

p
q

( )s
sb

p
p

p ηξ
ξξ

ζ +=1   ( )η+= ppp2   ( )sb

s

p

p

ηξξ
ξ

ηΨ
+

=1

η
ηΨ

+
=

p

p
2

( )
( )

( )
( ) ( )∆∆ ζζζΨΨ

ηξ
ηξξ

ηξξ
ηξ

Ψ +++
+

+
+

+
+

= 1213
p

p

p

p

s

sb

sb

s

( )
( ) ( )

( )( ) 











++
+++++++

+





+=

ζξζξξ
ζζζζξζζζξξζ

ηξ ∆∆

sbb

bbb
s

H AG

h

AG

h

K 12

1125.114
1

0

1 224
2

22

2

11

1  (18)

Let KH(p)/KH (0)=0, an equivalent critical force equation with Eq. (17) be obtained
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If ζ∆=0, Eq. (19) turns into
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The relations among non-dimensional horizontal stiffness KH(p)/KH (0) of the composite isolator and parameters
p, ζ, ξb, ξs, η are given in Fig.6~9 while ζ∆=0.2, 0.1, 0.0. It can be seen from these figures that KH(p)/KH (0) is
decreased with increasing p and slightly decreased with increasing ζ∆. This result shows that the non-
dimensional horizontal stiffness in consideration of the influence of the rigid plate is slightly lower than that of
without rigid plate and as increasing thickness of the rigid plate, KH(p)/KH (0) decreases further more. Remaining
other parameters unchanged, KH(p)/KH (0) and critical force decreases with increasing ζ as indicated by Fig.6,
increases with increasing ξb as shown in Fig.7. In addition, Fig.8 and Fig.9 show increasing and decreasing
tendency of KH(p)/KH (0) and critical force of the composite isolator respectively with increasing ξs and η.
However the results from Fig.6~9 indicate that the influence of the rigid plate on horizontal stiffness is
insignificant if ζ∆≤0.2.

HORIZONTAL STIFFNESS OF SERIAL SYSTEM OF RUBBER BEARING AND BEND COLUMN

If one of bearings shown for example the lower in Fig.3 is considered as column, the composite isolator becomes
general model of serial system of rubber bearing and column, and the simplified model discussed in previous
paragraph is its special case. However the shear deformation of column usually can be neglected and that is the
case of ξs (or G1A1) →∞. Thus the parameters involved in Eq. (17) can be simplified as

Fig.6   Relation of non-dimensional horizontal stiffness and axial
pressure of composite rubber bearing (ξ s =0.5  ξ b =0.5  η =1.0)
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Fig.7   Relation of non-dimensional horizontal stiffness and axial
pressure of composite rubber bearing (ξ s =0.5 ζ =0.5  η =0.5)
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Fig.8   Relation of non-dimensional horizontal stiffness and axial
pressure of composite rubber bearing (ξ b =1  ζ =0.5  η =0.5)
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Fig.9   Relation of non-dimensional horizontal stiffness and axial
pressure of composite rubber bearing (ξ s =4  ξ b =4  ζ =4)
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The KH(p)/KH (0)~p curves calculated by Eq. (17) and Eq. (21) show the relations among KH(p)/KH (0) and p, ζ,
ξb, η of serial system of bearing-column are similar to that of composite isolator but the critical force is slightly
increased.
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CONCLUSION

1. The approximate formula Eq. (3) is appropriate to larger λ of 4.0 which corresponds the case when shear
deformation is dominant in horizontal displacement of rubber bearing, but the proposed Eq. (1) and Eq. (2)
are good for various λ weather it is large or small.

2. A close form solution for horizontal stiffness of composite isolator consisting of two rubber bearing in series
with rigid plate in between is deduced, and the non-dimensional expression of horizontal stiffness given in
this paper is suitable to draw up design diagram. When the thickness of the rigid plate is small compared with
the height of one of rubber bearings in composite isolator, for example the height ratio less than 0.2, the
influence of the rigid plate on horizontal stiffness is insignificant.

3. The bearing-column serial system can be regarded as a special case of composite isolator that has been
deliberately discussed in this paper.
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