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THEORETICAL CRACK ANGLE IN REINFORCED CONCRETE ELEMENTS
SUBJECTED TO STRONG EARTHQUAKES

Jang Hoon KIM1 And John B MANDER2

SUMMARY

The purpose of this paper is to develop a mathematical expression for computing crack angles
based on reinforcement volumes in the longitudinal and transverse directions, member end-fixity
and length-to-width aspect ratio. For this a reinforced concrete beam-column element is assumed
to possess a series of potential crack planes represented by a number of differential truss elements.
Depending on the boundary condition, a constant angle truss or a variable angle truss is employed
to model the cracked structural concrete member. The truss models are then analyzed using the
virtual work method of analysis to relate forces and deformations. Rigorous and simplified
solution schemes are presented. An equation to estimate the theoretical crack angle is derived by
considering the energy minimization on the virtual work done over both the shear and flexural
components of truss models. The crack angle in this study is defined as the steepest one among
fan-shaped angles measured from the longitudinal axis of the member to the diagonal crack. The
theoretical crack angle predictions are validated against experimentally observed crack angle
reported by previous researchers in the literature. Good agreement between theory and experiment
is obtained.

INTRODUCTION

When reinforced concrete structures are subjected to large deformation reversals due to strong earthquake
loading, structural damage starts with cracking. The critical strength mechanism, governed by either shear or
flexure, is determined not only by the reinforcing steel layout, but also by the nature of the crack formulation,
particularly the crack pattern and angles. The crack angle in a structural concrete member is very important as it
affects the post-cracking stiffness as well as the ultimate strength of the member. Recent research in the United
States, and elsewhere, has proposed analysis and design models for the seismic shear strength of reinforced
concrete column members, explicitly or implicitly, with reference to a critical crack angle [ACI, 1995;
AASHTO, 1994; Eurocode, 1991; Collins and Mitchell, 1991; Hsu, 1993; Priestley, et al., 1994a,b]. For
example, the steel component of shear resistance is given, in its most general form, by

(1)

where shA = section area of shear steel, yhf = yield strength of shear steel, jd = internal lever arm, s =
transverse hoop spacing and θ = crack angle. But no guidance is given to designers as to the variability of this
important parameter. Rather, engineers are required to use prescribed values for example 30 and 35 degrees for
analysis and design, respectively regardless of the reinforcement configuration and/or aspect ratio [Priestley, et
al., 1994a,b]. These arbitrary values for crack angles have been based on empirical observations, but not sound
theory. Therefore, a mathematical expression for computing crack angles is developed in the present paper based
on reinforcement volumes in the longitudinal and transverse directions, member end-fixity and length-to-width
aspect ratio.
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TRUSS MODELING OF CRACKED CONCRETE ELEMENTS

It has long been recognized that the behavior of reinforced concrete beam-columns after onset of cracking can be
analyzed using an appropriate truss model. In truss analogy, longitudinal reinforcement is represented by
longitudinal chords of a truss, while transverse hoop steel is represented by transverse tensile ties. The effect of
concrete in flexural compression may be considered as a part of the longitudinal compression chord member.
The longitudinal chords and the transverse tensile ties are assumed to be internally stabilized by the struts that
model concrete regions under compression in the diagonal direction. The inclination of the diagonal struts should
coincide with the probable diagonal crack direction. For simplicity, the longitudinal chords, transverse tensile
ties and diagonal struts are assumed to be joined together through rigid nodes. Schlaich, et al.[1987] defined two
standard regions in structural concrete elements depending on the complexity of stress distribution: undisturbed
(B-) and disturbed (-D) regions. The definition is used through this paper.

Constant Angle Truss

The shear transfer mechanism for undisturbed regions in a diagonally cracked long beam-column member is
shown in figure 1. From the overall member shown in figure 1(a), a differential portion of truss with prismatic
members having finite depths can be extracted for analysis purpose as shown in figure 1(b). In this
representation, it is assumed that the transverse steel is uniformly distributed over the length of the member.
Now, consider this single differential truss subjected to the differential shear force sdV . Member forces of the
differential truss can be easily found by the static equilibrium. The shear deformation of a differential truss can
then be calculated using the principle of Virtual Work. Rigid longitudinal chords are assumed in order to negate
the effect of flexural deformation. It is noted that under constant shear, the deformation of each differential truss
is the same over the entire constant angle truss. The shear stiffness of the entire cracked concrete member due to
constant angle truss mechanism is obtained by carrying out the integration over the length defined by crack
angle, θcotjd . That is,

(2)
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θ
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Figure 1: Constant angle truss model
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where sΘ = drift angle due to shear, vρ = volumetric ratio of shear steel, cs EEn /= = modulus ratio, cE =
modulus of elasticity of concrete, sE = modulus of elasticity of steel and vA = shear area of concrete section.

Variable Angle Truss

The variable angle truss can approximately represent a diagonally cracked short column where disturbed regions
prevail as shown in figure 2(a). Consider a single differential truss element subjected to sdV  in figure 2(b). But

sdV  is not uniform through the length at this time. Note that a differential truss consists of a steel tie with depth
Ldx  and two tapered diagonal struts, where x  is a non-dimensional parameter varying from 0 through 1. A
tapered strut is idealized as a prismatic one with average depth. In a manner similar to the solution of the
constant angle truss mechanism, the elastic shear stiffness of a cracked concrete column is obtained by
integrating the differential stiffness over the entire length, thus

(3)

where α = corner-to-corner diagonal angle. Since a closed-form analytical solution to this equation has not
found, an appropriate numerical integration scheme is used instead. Then equation (3) can be expressed as

(4)

in which N = number of numerical integration points, iω = weight factor at ith point, ix = normalized coordinate

of ith numerical point. Any numerical integration scheme such as two-point and three-point Gauss quadratures,
Trapezoidal rule, Simpson’s 1/3 rule and Boole’s rule may be used for solving equation (4). It should be noted
that for squat columns where shear is generally critical (small jdL / ), there is virtually no difference in stiffness
calculations between numerical schemes as shown in figure 3. Since equation (4) with numerical parameter
values is lengthy, a convenient simplified solution can be used as

θ

θ θ

θ

Figure 2: Variable angle truss model
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The cracked elastic shear stiffness calculated by this approximation is favorably compared to the exact one in
figure 4, where Simpson’s 1/3 rule with 20=N  is regarded as exact.

COMPARISON OF STIFFNESSES

Figure 5 compares the stiffness of constant angle truss given by equation (2) with the exact one of the variable
angle truss given by equation (4). For this purpose, it is necessary to put θα =  which denotes that the steepest
crack angle to the longitudinal axis of the fan-shaped cracks at disturbed region of the column will be equal to
the constant crack angle at undisturbed region. Note that there is no remarkable difference between constant
angle truss and variable angle truss, and any model can be used for determining shear stiffness over the length of
the member.
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Figure 4: Approximation of shear stiffness due to variable angle truss

Figure 3: Comparison of shear stiffnesses between numerical schemes
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Two-Point Gauss Truss Model

Using equation (4) with numerical integration weights, the variable angle truss model in figure 2 can be
physically simplified with reasonable accuracy. Implementation of Gauss quadrature with two points results in
the two-point Gauss truss model as shown in figure 6. Axial rigidities of truss members at ith numerical point are
given by

(6)

(7)

(8)

where 5.021 == ωω , 2113249.01 =x , 7886751.02 =x , stA = section area of longitudinal steel, gA = gross
section area of concrete element and gstt AA /=ρ . It is noted that the strut section area in equation (7) can also
be obtained by measuring the depth of diagonal struts along the truss center line on the scaled sketch.

The shear deformation of the truss model is determined using the Virtual Work method of analysis on the
transverse ties and diagonal struts. Thus the shear stiffness of the truss models with fixed-fixed and fixed-pinned
ends should be the same. The flexural deformation of the truss model can be determined also using the Virtual
Work method of analysis considering only the longitudinal chord members. The elastic flexural stiffness of a
cracked concrete column about drift angle due to the variable angle truss model is given by

θ θ
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Figure 6: Truss model by two-point Gauss quadrature

Figure 5: Comparison of shear stiffness between truss models
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where 5704.0=ς  for fixed-fixed end and 5704.1=ς  for fixed-pinned end.

DETERMINATION OF CRACK ANGLE

It is believed in this study that the crack angle in a concrete member depends on both shear and flexural
components of displacement and will occur at an orientation that requires the minimum amount of energy.

Energy Consideration

The external work done on the structural member due to unit shear force ( 1=sV ) is the same as the total drift
angle, thus using equations (2) and (9)

(10)

Minimizing the external work done by differentiating equation (10) with respect to θ  leads to the crack angle
causing the minimum energy, that is

(11)

which has a solution

(12)

Experimental Validation

Table 1 presents a comparison of twenty experimentally observed crack angles with those computed using
equation (12). The comparison is also made in figure 7 by visualizing the data in table 1. It is evident that the
theoretical results compare very favorably with the experimentally observed crack angles. This clearly shows the
dependence of the crack angle on the quantity of longitudinal as well as transverse reinforcement.

CONCLUSIONS

Cracked structural concrete elements are modeled by considering postulated crack planes resulting in either of a
constant angle truss or a variable angle truss. Both truss models are satisfactory for determining the shear
stiffness over the length of the beam-column. It is shown that numerical integration schemes can be implemented
for physical simplification of the truss model. A theoretical foundation for computing the principal crack angle is
formulated using energy considerations. Therefore, it is concluded that the crack angle of 45° that has been
traditionally assumed in ACI 318 code [1995] for many decades as well as the newly suggested 30°
recommended by Priestley, et al. [1994a,b] both leads to a faulty prediction of shear strength.



09447

Table 1: Comparison of crack angles between theory and experiment

Specimen Boundary n tρ vρ gv AA / theoryθ expθ

1/3 Model Piera

Prototypea

1/3 Modelb

Column Ac

Column Cc

Column Dc

Circular C1d

Rectangular R2d

Unit 9e

Unit 13e

Unit 14e

Unit 16e

2R10-60uf

4R6-65uf

4R10-60uf

0R6-80bf

2R6-60bf

R1Ag

R3Ag

R5Ag

F-F
F-P
F-P
F-P
F-P
F-P
F-F
F-F
F-P
F-P
F-P
F-P
F-P
F-P
F-P
F-P
F-P
F-F
F-F
F-F

5.7
6.3
6.0
7.8
7.9
7.9
7.2
7.2
7.8
7.1
7.3
7.4
7.8
7.8
7.8
7.8
7.8
6.9
7.2
7.5

0.0186
0.0186
0.0102
0.0156
0.0156
0.0156
0.0254
0.0255
0.032
0.032
0.0324
0.032
0.032
0.032
0.032
0.032
0.032
0.025
0.025
0.025

0.00147
0.00115
0.00492
0.00785
0.01178
0.00785
0.00089
0.00102
0.00518
0.00518
0.00259
0.00259
0.00727
0.00239
0.00727
0.00194
0.00259
0.00123
0.00123
0.00123

0.756
0.746
0.701
0.405
0.405
0.405
0.852
0.901
0.828
0.828
0.828
0.828
0.81

0.828
0.81

0.828
0.828
0.881
0.881
0.881

24.3°
27.9°
40.7°
37.8°
40.4°
37.8°
21.3°
22.2°
35.0°
34.9°
30.5°
30.6°
37.1°
30.1°
37.1°
28.9°
30.6°
23.0°
23.1°
23.1°

26°
26°
39°
36°
39°
33°
22°
23°
35°
35°
31°
32°
38°
26°
36°
29°
30°
24°
24°
22°

aPier circular column with retrofitted beam-column joints [Mander, et al., 1996a,b]
bSeismically designed circular column [Mander and Cheng, 1995]
cSquare hollow-core columns [Mander, et al., 1984]
dColumns[Chai, et al., 1990]
eCircular columns [Ang, et al., 1989]
fCircular columns [Wong, 1990]
gRectangular columns [Priestley, et al., 1994a,b]
F-F: Fixed-fixed ends
F-P: Fixed-pinned ends

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30 35 40 45

Theory  (degree)

E
x
p
e
r
i
m
e
n
t
 
 
(
d
e
g

Figure 7: Crack angle comparison between theory and experiment
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