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SUMMARY

The purpose of this paper is to develop an identification method for time-varying transfer
functions which represent instantaneous frequency response of linear time-varying systems, and to
show its applicability to structural damage detection. We propose a three-step identification
procedure including optimal time-frequency smoothing estimators which estimate nonstationary
cross-spectra from observed data. A small-scale experiment and real strong motion records are
investigated to show that the proposed identification procedure is applicable to the structural
damage detection in the sense that it can track the structural changes in the time-frequency
domain.

INTRODUCTION

Structures damaged by strong earthquakes have changes in their physical properties. Many researchers have
studied on structural damage detection or health monitoring applying the system identification concepts. In
particular, identification methods based on time-varying system representations have been receiving increasing
attention because we can ‘track’ the structural degradation using these methods.

While most of the resent efforts in the structural engineering field are based on parametric time-varying models,
many studies on the nonparametric representations of nonstationary signals or systems have been done over the
past decades in the signal processing field. Recently, we have been working on the nonparametric time-
frequency representation of time-varying systems and its application to the structural damage detection [Masuda
et al. 1998, 1999]. In these literature, structures are modelled by linear time-varying (LTV) systems and their
changing frequency response are characterized by Zadeh's time-varying transfer functions (TVTF) [Zadeh,
1950].

In this paper, we extend our work more practically. First, we reduce the TVTF identification problem into two
nonstationary spectral estimation problems as described in [Masuda et al. 1998, 1999]. Then, an adaptive time-
varying spectral estimator is newly developed which has an optimal time-frequency smoothing kernel. Finally, a
small-scale experiment and real strong motion records are investigated  to demonstrate the efficiency of the
proposed method.

TIME-VARYING SYSTEM MODEL

Structures damaged by strong earthquakes have slow or abrupt changes in their physical properties such as
stiffness. Linear time-varying (LTV) systems excited by nonstationary random processes provide adequate
model of such degrading structures. The input-output relation of the model is given by

(1)
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(2)

where  is the unknown LTV system, is the input, and denote the input and output observations

corrupted by the zero-mean Gaussian stationary white noise processes  and  with their variance 

and , respectively (see Figure 1). It is assumed that  and  are independent of each other and

independent of .

The nonparametric representation of the LTV system  in the time-domain is given in the form of an integral
operator as

(3)

where  is the kernel function corresponds to the impulse response of the system and .
All integrals go from  to  unless otherwise specified.

The nonparametric representation of the LTV system in the time-frequency domain is given by Zadeh's time-
varying transfer function (TVTF):

(4)
which represents the instantaneous frequency response of the system. Clearly, The TVTF reduces to the ordinary
transfer function in the case of linear time-invariant (LTI) systems.

IDENTIFICATION

Three-Step Identification Procedure

We reduce the present identification problem into nonstationary spectral estimation problems using the three-
step identification procedure [Masuda et al. 1998, 1999]. This subsection provides a brief summary of that.

First, we introduce the decorrelation of  defined by

(5)

where  denotes the inverse of the LTV system  whose impulse response is given by the correlation
function of input . Then the following equation holds:

(6)

where  denotes the nonstationary cross-spectrum between  and  defined as

(7)

where  denotes the expectation operator.

Since it is difficult to make a direct evaluation of Eq. (5) except for some special cases, the following
approximation can be used:

Figure 1: Unknown LTV system  excited by nonstationary random process , and input
and output observations  and  corrupted by white noise processes  and 
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(8)

where  denotes the nonstationary spectrum of x  defined as

. (9)
The results of Eqs (5) - (9) can be summarized in the following three-step identification procedure:

Step 1 Estimate , the nonstationary spectrum of input.

Step 2 Decorrelate  by Eq. (8) to obtain .

Step 3 Estimate , the nonstationary cross-spectrum between  and . Then

 is the estimator of TVTF.

Figure 2 shows a schematic illustration of the procedure.

If the input is almost stationary, the following estimator can be used instead of the above procedure [Masuda et
al. 1999]:

(10)

where  is an estimation of the power spectrum of .

Nonstationary Spectral Estimation by Time-frequency Smoother

As mentioned previously, two nonstationary spectral estimators of  and  are needed to complete the
TVTF identification. In this and the next subsections, we develop an estimator for an arbitrary nonstationary

cross-spectrum .

Since the nonstationary cross-spectrum  is an expectation of the Rihaczek distribution , i.e.,

, (11)
the following time-frequency smoothing estimator is reasonable:

(12)

where  is a time-varying smoothing kernel. The above estimator takes a local average over an  app-

ropriate region defined by  instead of the ensemble average at the each point of .  The kernel

function  should be designed appropriately dependent on the local nonstationarity of processes.

Figure 2: Three-step identification procedure
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Adaptive Smoothing Kernel

We introduce a window function  to determine the appropriate time-varying smoothing kernel .

Rewriting the smoothing kernel as  and substituting it into Eq. (12) leads to

(13)

where  and  is the short-time ambiguity function given by

(14)

where  denotes the short-time Fourier transform with the window function . The following equation is
also derived from the definition of the nonstationary spectrum:

(15)

where  is the expected short-time ambiguity function given by

. (16)

Comparing Eq. (13) with Eq. (15), we define the optimal smoothing kernel  as

(17)
By the orthogonality principle, we have the solution as

(18)

and the optimal spectral estimator as .

In many practical problems, however, since it is almost impossible to know  and  a priori, we
have to estimate these statistics from the observed realization. Further details can be seen in [Masuda, 1999].

 EXAMPLES

Small-scale cantilever structure

Figure 3: Small-scale cantilever structure
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Figure 3 shows a small-scale cantilever structure consists of five parallel beams, a base and a mass. One end of
each beam is fixed on the base mounted on a shaker. The other ends of two beams are fixed on the mass while
those of remaining three beams are ‘pasted’ on the mass with adhesives. If the response of the structure becomes
larger, the connecting joints between the beams and the mass will break one by one. Thus this is a small-scale
model of a structure with welded joints which degrade under strong excitations.

First, we drived the shaker with small amplitude random noise to identify the frequency response of the structure
under stationary conditions. The resulting fundamental frequencies are shown in Table 1.

Then we drived the shaker with large amplitude nonstationary random noise and observed the acceleration
responses at the base (input) and the mass (output). Before the excitation, there existed five joints between the
beams and the mass. Then the number of ‘healthy’ joints reduced to two after the excitation.

The observed signals through the excitation are shown in Figure 4. and the waterfall plot of the identified TVTF
is shown in Figure 5. From Figure 5, it seems that the system changes three times, i.e., at 5s, 10s and 12s. To
confirm this impression, the time history of the identified fundamental frequency (which is obtained by the - /2
phase contour lines of the identified TVTF) is plotted in Figure 6. The identified frequency agrees well with the
fundamental frequency listed in Table 1.

Table 1: Identified natural frequencies under stationary conditions

Number of joints First-mode [Hz] Second-mode [Hz]
5 12.5 60.9
4 11.1 70.0
3 9.88 70.1
2 8.38 70.2

(a) Input acceleration                                                 (b) Output acceleration

Figure 4: Observatioin data

Figure 5: Identified TVTF for degrading cantilever structure
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Strong motion records for a seven-storey building

Strong motion records collected by CDMG for a seven-storey building during the Northridge earthquake of
January 17, 1994 are investigated. It has been reported that this building had severe damage to its concrete-frame
columns at the base and mid-elevation [Aurelius, 1994]. Kunnath [1997] pointed out that the fundamental
frequency of this building had changed to 0.42 Hz which were obtained through an ambient vibration test after
the earthquake. Figure 7 shows the sensor location and observed responses.

The time history of the identified fundamental frequency is shown in Figure 8 with solid line. The broken line
shows the fundamental frequency measured after the earthquake and the dotted line shows the result by Loh et
al. [1998] from the same data using the adaptive fading Kalman filter. The identified frequency asymptotically
shifts toward the measured frequency and its time history looks reasonable comparing with the result by Loh et
al.

Figure 6: Identified TVTF for degrading cantilever structure

Figure 7: Identified TVTF for degrading cantilever structure
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CONCLUSIONS

This paper is concerned with the linear time-varying (LTV) system identification and its application to the
structural damage detection. Nonparametric time-frequency representation of LTV systems, i.e., the time-
varying transfer function (TVTF) is introduced and its identification problem is described.

We have developed the three-step identification procedure which contains optimal time-frequency smoothing
estimators which estimate nonstationary cross-spectra from the observed data. A small-scale experiment and real
strong motion records have been investigated to show that the proposed identification procedure is applicable to
the structural damage detection in the sense that it can track the structural changes in the time-frequency domain.
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     (a) TVTF from  to                                                 (b) TVTF from  to 

Figure 8: Identified natural frequency and experimentally obtained natural frequency after the
earthquake


