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SUMMARY

An analytical approach is presented for the seismic response of vertical cylindrical towers totally
or partially covered with ice sheet on the sea surface. The vertical cylindrical tower is idealized as
an elastic circular cylindrical shell. The surrounding ice sheet is treated as an annular rigid
boundary attached to the tower. The hydrodynamic pressure is obtained in closed form by a
domain division method based on the linear potential flow theory. The seismic response is
formulated by the Rayleigh-Ritz method and wet mode superposition approach. Based on the
numerical results concerning wet mode free vibration and seismic response against horizontal
ground motion, the change in response behavior due to the extent of ice sheet is discussed.

INTRODUCTION

A vertical cylindrical tower has been used as one of typical fixed offshore structures. When the structure is
located in the first year ice area and in the seismically active region, the seismic response with and without
covered ice is a critical design consideration to assure structural safety and serviceability [Croteau, 1983].
In the first year ice area, the sea surface is covered by ice sheet in winter, while it becomes free surface in
summer. When subjected to earthquake ground motion, hydrodynamic pressure is generated on the exterior
surface of structure. The hydrodynamic pressure may be divided into two components: one is the pressure
component due to rigid body motion of structure, the other is the pressure component due to elastic deformation
of structure. The first component is dominant if the structure is rigid, while the second component becomes
significant if the structure is flexible. The distribution pattern of the hydrodynamic pressure may be, therefore,
considerably different depending on structural flexibility. When the sea surface is totally or partially covered
with ice, the hydrodynamic pressure generally increases because of the confined effect due to ice sheet against
horizontal ground motion [Kiyokawa et al., 1998]. The increase in hydrodynamic pressure may change wet
mode frequencies and shapes and, consequently, the dynamic behavior during earthquakes in winter may be
considerably different from that in summer.
Seismic analyses of vertical cylindrical towers submerged in water have been extensively carried out [Tanaka et
al., 1980]. However, there are very few studies on the seismic behavior of such structures in the ice field. This
study is concerned with an analytical approach for the seismic response of vertical cylindrical towers that are
totally or partially covered with ice sheet on the sea surface. In the mathematical formulation, the vertical
cylindrical tower is idealized as an elastic circular cylindrical shell. Based on the linear potential flow theory, the
hydrodynamic pressure is obtained in closed form against horizontal ground motion at sea bottom. Using the
Rayleigh-Ritz method, the equation of motion of the structure in the ice field is derived, taking into account
structural deformation. First of all, the wet mode free vibration analysis is carried out to investigate the change in
wet mode frequencies and shapes due to the extent of surrounding ice. Then, the seismic response analysis is
performed to predict the dynamic behavior of vertical cylindrical towers with and without ice sheet against
horizontal ground motion. Based on the numerical results, the difference between the dynamic behavior during
earthquakes in winter and that in summer is presented. Moreover, the change in dynamic behavior due to the
extent of ice sheet is discussed.
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ANALYTICAL MODEL AND ASSUMPTIONS

The analytical model of a vertical cylindrical tower
subjected to horizontal ground motion is shown in Fig.1.
The tower is surrounded by an annular ice sheet of constant
thickness at sea surface. In the figure, a, h, and l are the
radius, thickness and height of the vertical cylindrical tower,
b and c are the radius and thickness of the annular ice sheet,
d is the water depth, gU is the horizontal ground

displacement and w is the elastic deformation of tower. A
cylindrical coordinate system ),,( zr θ  is used. The origin is

located at the center of the vertical cylindrical tower on the
sea bottom. The following assumptions are introduced in
this study:
1. The stationary part of horizontal ground accelerations at

sea bottom is ergodic and zero-mean Gaussian process.
2. The sea water is irrotational, inviscid and incompressible.
3. The water depth is constant and sea water extends to

infinity.
4. The motion of vertical cylindrical tower is not constrained

by ice sheet.
5. The ice sheet is treated as rigid boundary at sea surface.

WET MODE FREE VIBRATION IN ICE FIELD

Wet mode shape

The dynamic behavior of vertical cylindrical towers may be evaluated by wet mode superposition approach. Wet
mode shapes may be expressed in terms of the superposition of orthogonal functions that satisfy geometrical
boundary conditions. The displacement components in axial, circumferential and radial directions may be
expressed as
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in which N  is the number of superposition of orthogonal function, mnjU , mnjV  and mnjW  are mode amplitude

coefficients, 1−=i , mnω  is the mn-th wet mode circular frequency, t  is time, and )(zg j  and )(zf j  are

orthogonal functions that are assumed by the j-th longitudinal and transverse vibration mode shapes of a

cantilever beam, respectively, given by
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in which ljµ  is the j–th root which satisfies the following transcendental equation,

01coscosh =+ll jj µµ . (4)

Hydrodynamic pressure

The hydrodynamic pressure acting on vertical cylindrical towers in free vibration may be obtained on the basis
of linear potential flow theory. The fluid domain is divided into ice-covered and free surface regions as shown in
Fig.2.
The governing equation in the ice-covered region is given by
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The boundary conditions are as follows:
Sea bottom condition,
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The velocity potential, )(iφ , in the ice-covered region may be obtained in closed form with unknown coefficients

as :
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in which )( rlK sn  and )( rlI sn  are the modified Bessel functions of order n  of the first kind and second kind,

0nD , nsD , 0nE  and nsE  are unknown coefficients, and dsls /π= .
On the other hand, the governing equation in the free surface region is given by
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The velocity potential, )( fφ , in the free surface region may be obtained in closed form with unknown

coefficients as
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in which )()2( krH n  is the Hankel function of order n  of the second kind, 0nB  and nlC  are unknown

coefficients, and k  and lk  are wave numbers that satisfy the following transcendental equation,

dkgkkdkg ll tantanh2 −==σ . (9)

The unknown coefficients may be determined by imposing the continuity conditions between iced-covered and
free surface regions:
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Kinematic continuity conditions,
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Pressure continuity condition,
)()( fi φφ =  ,  br = , dz ≤≤0 . (10c)

The hydrodynamic pressure acting on vertical cylindrical towers may be evaluated from the Bernoulli equation:
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in which wρ  is the mass density of water.

Eigenvalue problem

Using )exp()( tiUtU mnmnjmnj ω= , )exp()( tiVtV mnmnjmnj ω=  and )exp()( tiWtW mnmnjmnj ω=  as generalized

coordinates, the motion of freely vibrating vertical cylindrical towers coupled with water is governed by the
Lagrange’s equations:
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in which t∂∂=⋅ / , T  and S  are the kinetic and strain energy of circular cylindrical shells [Novozhilov, 1970],
respectively, and mniQ  is the generalized force given by
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Solving eqs. (12a-c) yields the modal equations of motion in matrix form,
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in which [ ]K , [ ]M  and [ ]WM are structural stiffness, structural mass and added mass matrices )33( NN × ,

respectively, { } { }TWVU=δ , { }U , { }V  and { }W  are mode shape amplitude coefficient vectors )13( ×N ,

)1( 22 νωρ∆ −= mns  Ea /2⋅ , and sρ , ν  and E  are the mass density, Poisson’s ratio and Young’s modulus of

structure. Wet mode frequencies and shapes may be obtained by solving the frequency equation,

[ ] [ ] [ ]( ) 0=+− WMMK ∆ . (15)

SEISMIC RESPONSE IN ICE FIELD

Wet mode superposition

Making use of a wet mode superposition approach, the displacement responses in axial, circumferential and
radial directions may be expressed as
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in which )(1 tqm  is the m1-th generalized coordinate. Other response quantities, such as accelerations and

internal forces, may be obtained in the similar way. Only the first Fourier wave number is considered for
horizontal ground motion under the assumption of rigid sea bottom.

Hydrodynamic pressure

The hydrodynamic pressure acting on vertical cylindrical towers subjected to earthquake ground motion may be
obtained on the basis of linear potential flow theory. The fluid domain is divided into ice-covered and free
surface regions.
The governing equation in the ice-covered region is given by
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The boundary conditions are as follows:
Sea bottom condition,
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The velocity potential, )(iφ , in the ice-covered region may be obtained in closed form with unknown

coefficients. The unknown coefficients may be determined by imposing the continuity conditions between iced-
covered and free surface regions. Using the Bernoulli equation, the hydrodynamic pressure may be evaluated as
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in which RP  and 1EmP  are the hydrodynamic pressure components due to rigid body motion and elastic

deformation of vertical cylindrical towers, respectively, given by
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in which )(*
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1 zCm  represent the axial distribution functions.

Modal equation of motion

The equivalent external forces in axial, circumferential and radial directions may be expressed as the
combination of the inertia forces of vertical cylindrical tower and the hydrodynamic pressure components,
respectively, given by
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The dynamic behavior of vertical cylindrical tower is governed by the Lagrange’s equation:
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in which 1DmQ  is the m1-th generalized damping force and 1AmQ  is the m1-th generalized force given by
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Making use of the orthogonal properties of wet mode shapes of vertical cylindrical tower, the m1-th uncoupled
modal equation of motion may be obtained as
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in which 1mM , 1mC  and 1mK  are the m1-th generalized mass, generalized damping and generalized stiffness,

respectively, *
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1mC  and *
1mK  are the m1-th generalized added mass, generalized added damping and
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Stochastic response
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The horizontal ground acceleration at sea bottom is characterized by the modified Kanai-Tajimi power spectral
density function given by
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in which the first and second brackets represent the Kanai-Tajimi low pass filter [Tajimi, 1960] and the Clough-
Penzien high pass filter [Clough and Penzien, 1975], respectively, 0S  is the spectral intensity, gξ  and gω  are

parameters of the low pass filter, and kξ  and kω  are parameters of the high pass filter.

On the basis of a linear random vibration theory, the variances of displacement responses in axial,
circumferential and radial directions can be obtained by
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in which 2
1mq  is the variance of the m1-th generalized coordinate given by
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and 1mα  and 1mβ  are coefficients given by
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NUMERICAL RESULTS AND DISCUSSTION

For numerical computations, dimensions and material constants are assumed as follows: radius of tower = 20m,
thickness of tower = 0.2m, height of tower = 80m, Young’s modulus of tower =2.0× 1011 N/m2, Poisson’s ratio of
tower = 0.3, mass density of tower =8.0× 103 kg/m3, material damping ratio in air = 0.02, mass density of sea
water =1.02× 103 kg/m3. Four different widths of annular ice sheet attached to the tower are considered: b-a = 0,
10m, 50m and ∞ . b-a = 0 and ∞  correspond to no ice sheet and full ice sheet, respectively. In eq. (25), the
spectral intensity S0= 4.3× 10-3 m2/sec3rad, parameters of the low pass and high pass filters are gω =15.6

rad/sec, gξ =0.6, kω =1.0 rad/sec and kξ =0.6.

Figure 3 shows the variation in wet mode shapes due to the width of annular ice sheet for (n,m)=(1,1) and (1,2)
modes. The water depth is 64m. Each wet mode shape is almost the same in spite of the width of annular ice
sheet.
Figure 4 shows the variation in wet mode frequencies due to water depth for (1,1) and (1,2) modes. The water
depth is normalized by the height of vertical cylindrical tower as /d . Wet mode frequencies decrease with the
increase in water depth as well as the increases in the width of annular ice sheet. Higher wet mode frequencies
decrease rapidly for shallow water.
Figure 5 shows the power spectral density function of horizontal ground acceleration and the location of wet
mode frequencies when the widths of annular ice sheet are 0 and ∞ . Lower wet mode frequencies are located in
the central region of the power spectrum of horizontal ground acceleration.
Figure 6 shows the axial distributions of  hydrodynamic pressure components due to rigid body motion and
elastic deformation of vertical cylindrical tower at 0=θ . The hydrodynamic pressure components due to rigid
body motion and elastic deformation vanishes at sea surface for no ice sheet. However, they becomes large with
the increase in  the width of annular ice sheet. The total hydrodynamic pressure is dominated by the
hydrodynamic pressure component due to elastic deformation. With the increase in the width of annular ice
sheet, the hydrodynamic pressure becomes large along the vertical cylindrical tower.
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Figure 7 shows the axial distributions of radial displacement and acceleration responses at 0=θ . The water
depth is 64m. The displacement response increases with the increase in the width of annular ice sheet. The
acceleration response also increases with the increase in the width of annular ice sheet.

CONCLUSIONS

Based on the linear potential flow theory, the hydrodynamic pressure acting on vertical cylindrical towers
subjected to horizontal ground motion is obtained in closed form. Using the Rayleigh-Ritz method, the seismic
response of vertical cylindrical towers in the ice field is formulated, taking into account structural deformation.
Based on the numerical results, the following conclusions can be obtained.
1. Wet mode shapes are almost the same in spite of the width of annular ice sheet. On the other hand, wet mode
frequencies decrease with the increase in water depth as well as the increase in the width of annular ice sheet.
Higher wet mode frequencies decrease rapidly for shallow water.
2. The hydrodynamic pressure components due to rigid body motion and elastic deformation become small in the
vicinity of sea surface for no ice sheet. However, they become large with the increase in the width of annular ice
sheet. The total hydrodynamic pressure is dominated by the hydrodynamic pressure component due to elastic
deformation. With the increase in the width of annular ice sheet, the hydrodynamic pressure becomes large along
the vertical cylindrical tower.
3. The displacement response becomes large with the increase in the width of annular ice sheet. The acceleration
response becomes also large with the increase in the width of annular ice sheet.
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