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PHASE CHARACTERISTICS OF SOURCE TIME FUNCTION MODELED BY
STOCHASTIC IMPULSE TRAIN

H MORIKAWA1, S SAWADA2, K TOKI3, K KAWASAKI4 And Y KANEKO5

SUMMARY

In order to discuss the relationship between the lower and higher frequency components of source spectra, we
deal with impulse train model as source time function. Considering the successive rupture of small extent on a
fault plane, we represent the source time function by time series which consist of random sequence of impulses.
Under this assumption, the spectral characteristics of source time function are obtained analytically and
numerically from the stochastic viewpoints: namely, on one hand, the trend of impulse train determines the
frequency characteristics of phase spectrum in lower frequency range, and on the other hand, the uctuation from
the trend settles higher frequency range. Furthermore, it is shown that the spectral properties of source time
function can be determined using only two parameters which are number of impulses N and probability density
function (PDF) of occurrence time of impulse f T (t).

INTRODUCTION

The objective of this study is to discuss the relationship between the lower and higher frequency components of
source spectra and to model its spectral properties. For this purpose, we will deal with impulse train model as
source time function, because spectral characteristics of source time function depend on the occurrence time of
impulse function which corresponds to small extent on the fault. Considering the successive rupture of small
extent on a fault plane, we will represent the source time function by impulses which are randomly generated on
time axis from a probability model.

There are many studies which deal with the stochastic processes of impulse train. Most of such studies are
focused on the problems of \point process," which are mainly discussed as counting problems [ex. Daley and
Vere-Jones, 1988]. These studies did not treat the Fourier spectrum, while a few researchers deal with power
spectra for spectral representation of the point processes [ex. Vanmarcke, 1983, and Lin and Cai, 1995].

We analytically derive the stochastic properties for Fourier amplitude and phase spectrum of time series which
consist of impulses occurred randomly. In particular, introducing the group delay time spectrum  tgr (ω) instead
of Fourier phase spectrum, which is the gradient of phase spectrum, the stochastic characteristics of phase in
frequency domain will be made clear. While the basic ideas of tgr(ω) have been appeared more than twenty years
ago [Ohsaki, 1979, Izumi and Katsukura, 1983, and Soda, 1986], there were little studies on this problem in this
decade. We discuss newly the the group delay time spectrum from the viewpoints of stochastic impulse train.



2. PROBLEM SETTING

We will treat a time series obtained by

x(t) =

NX
k=1

��(t� tk); (1)

where �(t) is Dirac's delta function, � magnitude of impulses, N number of impulses, and tk random

variable following any probability density function (PDF) fT (t). It should be noted that the magnitude

� can be constant without the loss of generality, because we can consider that some impulses occur at

same time tk in a case where the impulses have di�erent magnitudes.

Using the relation that the Fourier transform of �(t) is exp[�i!], where i =
p
�1, and ! is circular

frequency, the Fourier transform of x(t) becomes

X(!) = �

NX
k=1

exp[�i!tk]: (2)

Rewriting X(!) as A(!) exp[�i�(!)], the Fourier amplitude A(!) and phase spectrum �(!) yield, re-

spectively,

A(!) = �

vuut NX
k=1

NX
`=1

cos!(tk � t`) (3)

�(!) = tan�1

NX
k=1

sin!tk

NX
k=1

cos!tk

: (4)

Then the group delay time spectrum tgr(!) of x(t) is derived as

tgr(!) =
d�(!)

d!
=

NX
k=1

NX
`=1

tk cos!(tk � t`)

NX
k=1

NX
`=1

cos!(tk � t`)

: (5)

To examine the generality of the constant magnitude �, a simple example is presented in Figure 1. The

uppermost panel (a) of this �gure shows two impulses with di�erent magnitudes, and the other panels

compare the results obtained from the Eqs.(3) and Eq.(5) and from fast Fourier transform (FFT) method.

Since these �gures seem to be same, we can accept the supposition of constant magnitude of impulses.

The binomial variate, generally speaking, is the number of successes in n-independent Bernoulli trials

where the probability of success at each trial is p and the probability of failure is 1� p. The probability

function of the binomial variate Xn is represented by

P (Xn = x) =

 
n

x

!
p
x(1� p)n�x (x = 0; 1; 2; : : : ; n): (6)
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Figure 1 Comparison between analytical and numerical results for a impulse train with di�erent mag-

nitude.

Then, the mean and variance of Xn are �Xn = np, �2
Xn

= np(1 � p), respectively. Furthermore, the
binomial variate X

n
can be approximated by the normal variate with mean np and variance np(1� p),

provided np(1� p) > 25 for any p [Evans et al., 1993].

Now, let us consider x(t
i
) from Eq.(1) which represents the realized value of impulse train at a �xed

time interval [ti; ti+�t], where �t is a small increment of time. Then, x(ti) can be treated as Bernoulli
trial. Applying the binomial distribution to the impulse train x(t), n in Eq.(6) corresponds to the total
number of impulses N , p to f

T
(t)�t, and X

n
to n

i
, where f

T
(t) is the probability density function

of the occurrence time of impulses and ni is the number of impulses occurred in a small time interval
[t
i
; t
i
+�t]. Since we will consider large N , n

i
can be approximated by the normal variate for any t

i
.

Thus, the stochastic impulse train x(t) of Eq.(1) can be treated as Gaussian process represented by
N(�(t); �2(t)), where the mean �(t) and variance �2(t) are, respectively,

�(t) =Np = NfT (t)�t (7)

�2(t) =Np(1� p) = Nf
T
(t)�t(1� f

T
(t)�t): (8)

To understand the characteristics of x(t), we will divide x(t) into two components: that is,

x(t) = x
m
(t) + x

s
(t); (9)

where xm(t) is the trend process of x(t) and xs(t) 
uctuation from xs(t). From Eqs.(7) and (8), we can
obtain

x
m
(t) =Nf

T
(t)�t (10)
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Figure 2 Schematic example for Eq.(9). up-

per panel: original impulse train x(t), lower left

panel: trend process xm(t), lower right panel:


uctuation xs(t).
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Figure 3 Fourier amplitude A(!) and group delay

time tgr(!)

xs(t) =N(0; NfT (t)�t(1� fT (t)�t)) =
p
NfT (t)�t(1� fT (t)�t) � �(t); (11)

where �(t) is Gaussian process with zero-mean and the expectation E[�(t1)�(t2)] = 0 (as t1 6= t2) or 1

(as t1 = t2).

Eq.(10) shows that the trend process xm(t) has similar shape with probability density function fT (t)

for occurrence time of impulses. The coe�cient in Eq.(11), that is,
p
NfT (t)�t(1� fT (t)�t) can be

regarded as the envelope function of xs(t). As an example, the trend process xm(t) and 
uctuation xs(t)

for a case where fT (t) is triangular distribution are shown in Figure 2.

3. FOURIER SPECTRUM OF IMPULSE TRAIN

3.1 Basic Properties

We will discuss the relationship between the stochastic process x(t) and its components xm(t) and xs(t).

It is considered that x(t) is dominated by the component which has larger spectral amplitude. Namely,

this can be formularized as

A(!)'

(
Am(!) (! � !c)

As(!) (! � !c)
(12)

tgr(!)'

(
tgrm(!) (! � !c)

ptgrs(!) (! � !c);
(13)

where A(!), Am(!), and As(!) stands for Fourier amplitude spectra, tgr(!), tgrm(!), and tgrs(!)

for group delay time spectra for x(t), xm(t), and xs(t), respectively. !c is a value on !-axis for the

intersection of Am(!) and As(!). Although the group delay time spectrum has large 
uctuation in high

frequency range, our discussion, hereafter, will be focused on the average properties for simplicity.

A(!), Am(!), and As(!) are shown in the left panels of Figure 3 and tgr(!), tgrm(!), and tgrs(!) in the

right panels. From this �gure, Eq.(12) provides good approximation, while Eq.(13) cannot be acceptable



because of the unsettled area in which the group delay time spectrum tgr(!) changes gradually from

tgrm(!) to tgrs(!) around !c. One of reasons why such the area is observed, is existence of the 
uctuation

of As(!) around !c. Because we cannot determine uniquely which Fourier amplitude of xm(t) and xs(t)

is larger. We will call this area \transition area" and use !� and !+ as the frequencies at lower and

upper boundary of the area, respectively. From Figure 3, it appears that tgr(!) changes linearly from

tgrm(!
�) to tgrs(!

+) in the transition area. Figure 4 shows schematically the relationship between the

Fourier amplitudes and group delay time spectra for

x(t), xm(t), and xs(t).

Dividing the frequency range into three parts, that

is, low and high frequency and transition area, we

will model A(!) and tgr(!) for each frequency range

in the following sections.

3.2 Low Frequency Range

Since the trend process xm(t) predominates in low

frequency range, the Fourier spectrum can be de-

termined without di�culty: that is,

Am(!) =Af (!) �N�t (14)

tgrm(!) = tgrf (!); (15)

where Af (!) and tgrf (!) are Fourier amplitude and

group delay time spectrum of fT (t), respectively.

In a case to multiply the number of impulses N by

�, the value of Am(!) yields
p
� times from Eq.(14).

Furthermore, if fT (t) is triangular distribution, then

Am(!) has gradient �2 on a log-log scale. Thus,

the intersection !c of Am(!) and As(!) is reduced

to �1=4 times.

3.3 High Frequency Range

On the other hand, 
uctuation xs(t) predominates

in high frequency range. Since xs(t) is Gaussian

white noise multiplied by complicated envelope func-

tion as shown in Eq.(11), strict reduction of Fourier

amplitude As(!) and group delay time tgrs(!) are

generally di�cult. We, therefore, will derive analyt-

ically the representative values of As(!) and tgrs(!).

For the Fourier amplitude As(!) in high frequency

range, it is considered that the average of As(!) is

constant from the observation of numerical results.

The constant value coincides with the root mean

squared of time series xs(t):

As(!) � As =

s
1

T

Z T

0

fxs(t)g2 =

s
1

T

Z T

0

�2(t)

=

s
N

T

Z T

0

fT (t)(1� fT (t))dt;

(16)

where T denotes the duration time of x(t).
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Generally, the following relation can be obtained for any time series z(t) [Izumi and Katsukura, 1983]:

1

E

Z
1

�1

t � j�z(t)j2dt =
1

2�E

Z
1

�1

tgr(!)j �Z(!)j
2
d!; (17)

where �z(t) is the analytical function of z(t), �Z(!) the Fourier coe�cients in complex of �z(t), and

E =

Z
1

�1

j�z(t)j2dt =
1

2�

Z
1

�1

j �Z(!)j2d!: (18)

Eq.(17) means that the center of gravity for squared envelope function j�z(t)j2 coincides with average of

group delay time spectrum.

For the group delay time spectrum tgrs(!) in high frequency range, it seems that the average of tgrs(!)

is constant, and then we will use tgrs as such the constant value. Taking Eq.(17) into account, tgrs yields

tgrs =
1

E

Z
T

0

t�
2(t)dt =

1

E

Z
T

0

t �NfT (t)(1� fT (t))dt; (19)

where

E =

Z
T

0

�
2(t)dt =

Z
T

0

NfT (t)(1� fT (t))dt: (20)

3.4 Transition Area

To determine the lower and upper boundary of transition area !
� and !

+ for tgr(!), we have to

analytically estimate the variance of A(!) in high frequency range. If tk (k = 1; 2; : : : ; N) are random

variables in Eq.(1), the probability density function of x = A(!) is derived from Eq.(3) for large N as

follows:

fA(x) =
2x

N
exp

�
�
x
2

N

�
: (21)

It should be notice in this equation that fA(x) is independent of the probability density function fT (t) for

the occurrence time of impulses. In Figure 5, Eq.(21) is compared with a histogram of Fourier amplitude

which is obtained from numerically simulated impulse train x(t) of Eq.(1). From this �gure, it is observed

that Eq.(21) agrees with the numerical result.

Using relation y = log x, moreover, Eq.(21) is transformed as

fY (y) =
2 ln 10 � 102y

n
� exp

�
�
102y

n

�
: (22)

Then, the mean �y and standard deviation �y of the random variable y are

�y =�
1

2 ln 10

�
C + ln

1

n

�
(23)

�y = ln 10

r
�

24
= 0:2785; (24)
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Figure 7 Example of the estimated group delay time.

where C stands for Euler's constant. From Eq.(24), the standard deviation of logA(!) is constant:

namely, it is independent of number of impulses N and PDF fT (t) for occurrence time of impulses.

This means that the range of transition area depend only on the gradient of Fourier amplitude of trend

process xm(t). Using the properties obtained above, we can determine the transition area as shown in

Figure 6.

4. MODELING PHASE SPECTRA

On the basis of the discussion in the previous sections, we can determine the spectral properties of source

time function modeled by stochastic impulse train. The procedure for modeling the spectrum is given

as follows:

(1) x(t) is divided into two components: that is, x(t) = xm(t)+xs(t), where xm(t) stands for trend and

xs(t) for 
uctuation.

(2) xm(t) and xs(t) are represented by

xm(t) =NfT (t)�t (25)

xs(t) =
p
NfT (t)�t(1� fT (t)�t) � �(t); (26)

where �(t) is Gaussian process with zero-mean and expectation E[�(t1)�(t2)] = 1 (as t1 = t2) or 0

(as t1 6= t2).

(3) Fourier amplitude and group delay time for xm(t) are obtained through the Fourier transform of

fT (t):

Am(!) =Af (!) �N�t (27)

tgrm(!) = tgrf (!): (28)

(4) Fourier amplitude of xs(t) is calculated as root mean squared of envelope function for xs(t):

As =

s
N

T

Z T

0

fT (t)(1� fT (t))dt: (29)

(5) Group delay time of xs(t) is calculated as the center of gravity of envelope function for xs(t):

tgrs =
1

E

Z T

0

t �NfT (t)(1� fT (t))dt: (30)

(6) Then, A(!) is obtained as follows:

A(!) '

8<
:
Am(!) =Af (!) �N�t (! � !c)

As =

q
N
T

R T
0
fT (t)(1� fT (t))dt (! > !c):

(31)

(7) The standard deviation of logAs(!) is independent of N and fT (t): �As
= 0:2785.

(8) The lower and upper boundaries of transition area !� and !+ are determined from �As
and Am(!).



(9) Then, tgr(!) is obtained as follows:

tgr(!) '

8
>>><
>>>:

tgrm(!) = tgrf (!) (! < !�)

tgrm(!
�) +

log! � log!�

log!+ � log!�
ftgrs(!

+)� tgrm(!
�)g (!� � ! < !+)

tgrs =
1

E

R
T

0
t �NfT (t)(1� fT (t))dt (!+ � !):

(32)

The average properties of group delay time for impulse train is uniquely determined from only two
factors, namely, the number of impulses N and the probability density function fT (t) for occurrence
time of impulses. Figure 7 shows tgr(!) estimated on the basis of fT (t) and N following the above
procedure. In this �gure, it is observed that the analytically obtained tgr(!) agrees with the result
calculated by FFT method. This means that the proposed method is appropriate for analysis of phase
properties of source time function.

6. CONCLUSIONS

The conclusions derived from this study are summarized as follows:

1. The stochastic impulse train can be divided into two components such as trend process and 
uc-
tuation from trend. Then, the spectral properties of impulse train are dominated by a component
which has larger spectral amplitude.

2. The spectral properties of source time function depend on the trend process in low frequency range
and on the 
uctuation from trend in high frequency range.

3. In the middle frequency range, the \transition area" appears because of the 
uctuation of Fourier
amplitude. The range of transition area can be determined by the standard deviation of Fourier
amplitude in high frequency range, which is constant and independent of number of impulses and
PDF for occurrence time of impulses.

4. It is shown that we can analytically derive the average properties for group delay time spectrum of
impulse train using only two factors which are the number of impulses and PDF for occurrence time
of impulses.
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