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ABSTRACT:

An estimation of the impedances referred to rigid massless caps of pile groups is

proposed in the simple procedure without much computational effort under harmonically vertical
and horizontal vibrations and consistently in the static and dynamic states. The dynamic soil
reaction and the interaction factor in consideration of the pile-soil-pile interaction are
derived from the dynamic Winkler model by employing the dynamic Kelvin's solution of the soil.
The simplified estimation is verified from comparison with the previous solutions of others.
The proposed estimation is sufficiently accurate and readily useful in the practical situa-
tion. A convenient expression of the efficiency factor of pile groups in the static case is
also presented in the closed form including the number of pile and the pile spacing of the

group.

1 INTRODUCTION

For the purpose of predicting the dynamic
responses of structures with pile group foun-
dations exposed to seismic excitation, in
recent years, a significant amount of work
has been done on the impedances referred to
the pile caps of soil-pile group systems, as
the impedances become to play an important
role in coupling to superstructures. It is
desirable that the dynamic responses of
structures are readily predicted in con-
sideration of the complex pile-soil-pile
dynamic interaction in the practical situa-
tion, because much computational effort is
used up costly for more accurate estimation
of the impedances by the useful numerical
method such as the finite-element method or
the boundary-element method. For that demand
the simplified methods, which deal with the
soil as the Winkler medium, are successfully
developed from the dynamic plane-strain
solution® of the soil by Novak® for single
piles and by Nogami® for pile groups, and
from the dynamic Kelvin’s solution of the
soil by Nozoe et al.* for single piles. The
another simple method, where the impedances
of pile groups is derived from the known im-
pedances of single piles, is presented by
Dobry et al.*. The simplified estimation of
impedances for pile groups, however, is not
performed consistently in the static and
dynamic cases.

A simplified estimation of impedances for
pile groups, in this paper, is proposed under
vertical and horizontal vibrations by exten-
sion of the above simplified method of single

piles based on the dynamic Kelvin's solution
of the soil.

2 DESCRIPTION OF MODEL AND FORMULATION

An analysis model of a pile-soil-pile system
sketched as cylindrical coordinates in Fig.l
is considered for a floating pile group in-
stalled in a surface stratum lying on the
rigid bedrock under vertical and horizontal
vibrations. The soil is dealt with as three-
dimensional continuum to be elastic, homo-
geneous and isotropic with the linear hys-
teretic damping. Each of the identical pile
in the group is assumed to be perfectly in
contact with the soil during the motion.
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Fig.1 Model of pile-soil-pile system




For the pile j, the equations of motion and
the constitutive relationships with respected
to the vertical and horizontal displacements
W. and U, respectively, and the rotational

angle R, is expressed by N
dNe — dw.,
dz Pe== P AriWe; T dz E_j‘:.-_
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where the time factor exp(i w t) in the har-
monic excitation is abbreviated for con-

venience. N., and Q. are the axial and
shear forces, respectively, and M,, is the
bending moment. p.=mass density, E.=

Young’s modulus, A,=cross sectional area,
I .=moment of inertia of the cross section.
py; and p., are the tortal tractions per
unit length of the soil along the shaft of
the pile in the z and x directions, respec-
tively. The pile j is also subjected to the
harmonic excitations Ns, Qr, and M., at
the pile head, and the total soil reactions
N.,, Q,; and M,, at the pile tip.

For the soil in contact with the pile j,
the total tractions p., and p., the total
displacements W, and U, along the pile
shaft, and N,., and Q., at the pile tip in
the z and x directions, respectively, can

be expressed by
p-,—-z pv,., W; ZW;;. NIJ—ENIJI (2)

P ns Epn,., UJ EU;:. Q-:“EQlu
where 2 is the meaning of the sum over all
of the pile (k=1,2,::-,n) in the group. M.,
is omitted because it is negligibly small.

By solving Eqs. 1 to take into account of
Eqs. 2 and the continuity condition of the
displacements between the pile j and the
soil, i.e. W,=W, and U,,=U,, the im-
pedance matrix [K] referred to the rigid
massless cap of the pile group is obtained
from the following definition:

N. Kw, 0, 0 We
Qe = 0 » Km, Kan Ue (3)

Mc 0 » Kn«, Kn )
where K.x=Kum o < and M. are the
dynamic loadings acting at the middle point
of the cap, and then W., Uc and R. become
the corresponding responses of the cap.

3 SIMPLIFICATION OF ANALYSIS MODEL

In the above boundary-value problem, the ex-
act estimation of the pile j-soil-the pile k
interaction requires the huge computational
process. For the purpose of an simplified es-
timation of the impedances for the pile
group, the soil is assumed as the Winkler
medium. Then the tractions pv,, and D, and
the soil reactions N.,, and Qa.,, occurring on
the active pile j due to the displacements
W,, and U,, of the soil on itself can be ap~
proximately expressed as follows:

pvu=Kcv(l+Zi g )Wu

Dus=Ka(l+2i &)U, (4)

Nay,=K.(1+2i €)W,

Qa=K.(1+2i &)U,
where € =ratio of hysteretic damping for
soil. It is the first step to a simplifica-
tion in the dynamic Winkler model that we are
able to find Kev, Kexy, Kav and Ka. of the
dynamic Winkler springs to be constant with
depth as the appropriate spring constants to
reflect the pile behavior.

The Winkler spring constants Kev and Ko
along the shaft of pile are derived from the
approximate solutions for a tentative float-
ing pile made of soil in an elastic half
medium. Those solutions are obtained ap-
proximately under the dynamic loadings dis-
tributed along the pile shaft triangularly
(suffix m=1) and uniformly (suffix m=32),
which represent the two typical pile be-
haviors, by superposition of the dynamic
Kelvin's solutions based on the mirror
reflection and the dynamic plane-strain solu-
tions in vertical and horizontal vibrations.
The Winkler spring constants along the pile
shaft (r=r,) are defined as

=’21t rokv; kv=T-/W- (5)

Ke=nro.ks ; ku=0.U.
where ¢ and o are tractions in the z and
x directions, respectively. By the displace-
ments ucosf, vsin® and w of the soil in
the r, O and 2z directions, respectively,
U=(u—v)/2, V=(u+v)/2 and W=w.
Then the solutions in the horizontal vibra-
tion result in U,,=U(r.)+V(r.)cos28=
U(r,) and represent nicely the circular
condition on the pile circumference like a
real pile, because V(r.) becomes negligibly
small over deeper depth from the ground sur-
face by employing the plane-strain solution
besides the dynamic Kelvin’s solution, which
is used only in the previous estimation*. The
coefficients of traction k. and k. become
large near the pile head and tip in the exact
results, but are regarded to be roughly con-
stant along depth as those of the approximate
solutions. The coefficients of traction at
the ground surface in the solutions for the
triangular and uniform distributions would be
available as a representative value.

Therefore, an approximation of the solu-
tions for the triangular and uniform dis-
tributions is performed at the ground surface
under the slenderness ratio L./r.=10 in the
explicit form. That is

1) Triangular distribution:

[Lower frequency range =2]
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[Higher frequency range: u.->2]
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3) Plane-strain solution:
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where A. and B. (m=1,2) are arbitrary con-
stants. kv=w/V., kx=w/V, V.and V,
are wave velocities of soil for dilatation
and distortion, respectively. x =shear
modulus of soil, v =Poisson’s ratio of soil.
Qo=Kkulo, Do=K+To, Ar=kuLe b.=k.
L., H.® 1is the Hankel function of the
second kind of the i-th order. When the pile
length tends to infinity, the above solutions
agree with the plane-strain solutions of
Novak et al.™.

The dynamic coefficients of traction for
arbitrary distribution by superposing the
solutions for the triangular and uniform dis-
tributions. That is

—_TatTa - 0.1t g,
ke=—wrwe BT ®)
and
A=B.=F%, A=B.=l-§* (10

where the effective length Lo.=min(L, L)
and the effective depth H.=min(H , L.)
are introduced and L, in the above solutions
is replaced by L.. Also the critical length
is defined in the static state (w =0) as
follows:

L.=38/V Ka/(E.A,) for vertical

=3/*v Ka/(@E.T,) for horizontal an

Because the result for the triangular dis-
tribution is suitable for end bearing piles
or long-flexible piles (L,.>L.) and the
result for the uniform distribution is also
suitable for rigid floating piles in half
media, Eqs. 10 are given in a simple super-
position. Moreover, the static coefficients
of traction can be expressed in the following
simple form:
[Lo/ro210]

=TLoripdle
=Eenlle)-

1Ly
id—v) H.
3—2
/[1'2(1 oy i

L_r, 8=ty dLe L,

ko z T ) + 303 4v) T
J[1—-S—4

a—=-vy H

(12)

The proposed coefficients of traction of Egs.
12 are useful within 10 % error from com-
parison with the exact solutions of others.
The dynamic Winkler spring constants along
the pile shaft can be obtained by Eqs. 5 and
9 readily and consistently in the static and
dynamic states. Although the critical length
L. is determined with a few iteration from
Egs. 11 and 12 by Lo=H.=L., we give the
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following regression of L. as a useful es-
timation.

Z
L._S5(E.A,]* .
.3 [—l-l—Aﬂ for vertical

=§—‘i—[%}[: - for horizontal
where E.=Young’s modulus of soil, A.=

nro and I.=x r.*/4. The error of Egs.13
is within 2 % in E.A./ ¢ Ae=35~750 and 1
% in ErI p/E.I .=15~10‘ fOI' v20.3.

On the other hand, the Winkler spring con-
stants K.» and K.. at the pile tip are pro-
posed in the simple expression. Those are
derived from the static state.

(13)

[Lo/ro=5]
Klv= Ziffvg r o(1+ ZLI' o)
6pre : a4
K= 2—v

where L.=H— L. Egs. 14 are calibrated

from Kausel's semi-analytical expressions for
a rigid circular foundation on a stratum over
a rigid bedrock in consideration of the ef-
fect of the tractions along the pile shaft
and valid within 10 % error from comparison
with the exact results of others. The dynamic
springs are also used approximately by Egs.
14, because of the small influence of N., and
Q., on the impedance for the slender piles
(L./r.210).

The passive pile j is influenced by the ac-
tive pile k through the soil. It is the
second step to a simplification that p v,
P nixy N-:x, Qllln W:- a.nd Un of the soil on
the pile j made of soil, namely the soil
column j, which occur due to the displace-
ments W.. and U.. of the active pile k, can
be obtained to reflect the soil motion.
Though the responses on the circumference of
the soil column j generally vary, these
responses can be estimated approximately at
the axis of this soil column for a.=n /6
in the case of longer wavelength propagated
in comparison with the diameter of pile.
Therefore, W, and U,. at r =S ,. and 6 =
6 .., where S ,. is axis-to-axis pile spacing
and 0 ,. is angle between the line of the two
piles and the x direction, can be expressed
as follows:

W11=TV‘J.W“

Un=TwuUn (15)
The dynamic interaction factors T.,.. and T
are derived from the same solutions as those
of the coefficients of traction along the
pile shaft. For simplification T, and T ..
to be constant with depth are approximately
estimated at the ground surface as a repre-
sentative value,

Tyu=W(S u)/W(r.)

T»un:[U(S 1-)+V(s ;-)COSZ 6 Jl:]/U(r u)(ls)

where T.,,=Tu,=1 are also'defined. As a

result, the variation of the passive res-
ponses W,. and U,. with depth becomes analo-
gous to the variation of the active responses

W and U,

On the other hand, the tractions p., and
D along the shaft of the soil column j due
to the active pile k are directly estimated
from the equations of motion such as Egs. 1
for the pile when the motions are the res-
ponses W,. and U,.. That is

pv4-=E-A._d_;_.W;‘;‘_+ p.A.w'W;-
pu;g=°’E-I -—H_Z—J;'—'_ p-A-w'U;u
where p.=so0il density.

The soil reaction N,,. and Qa.,. at the tip
of the soil column j due to the action of the
pile k are obtained in the same way.

anu=E-A-%‘£; Q-:n="E.I.‘%"%F'

(18)
where the inertial force of soil is neglect-
ed.

4 RESULTS OF IMPEDANCES AND DISCUSSIONS

The pile-soil-pile interaction problem ar-
rives at the eigen-value problem with res-
pected to the independent responses W.. and
U.. of the soil in contact with the pile k
(k=1,2,---,n) in the group. The solutions of
the pile j can be obtained in the following
expression.

Wr;:" 2 Y v,lWo!(l ve Z ) (19)

Ur;= z ‘YHJ‘UOL(l ny 2 )
where ¥ is the sum of £=1 to n. 2.2 and
Axp are the eigen values of the [-th order.
Yeir=2Z Toug, ¥ xe=Z TumBur, where =
is the sum of k=1 to n, and @.. and B .. are
the k-th components in the eigen vectors of
the I-th order. W.e and U,y are the general
solutions of the I-th order and the including
integral constants are determined from the
boundary conditions of the pile head and tip
systematically. Finally, the impedances
referred to rigid massless caps of pile
groups are estimated in the simple procedure
from Eq. 3.

The simplified estimation of the impedance
matrix for pile groups is verified by the
numerical analysis from comparison with the
previous solutions of others. The numerical
analysis is performed for the square groups
of n piles capped rigidly and the closest
pile spacing S =4r, as sketched in Fig.2.
The comparison of the results of the im-
pedance matrix for pile groups in an
homogeneous half medium by the proposed
method, the exact solution of Kaynia & Kausel
(1982) and the simple method of Dobry &
Gazetas® are shown for the real part=
Re(.K) and the imaginary part=Im(.K)/(2a.)
normalized by the static Re(,K) of the
single pile with the dimensionless frequency
a. in Fig.3. The analytical parameters are
as follows:

Poisson’s ratio v =0.4 and the hysteretic
damping ratio & =0.05 of soil, the slender-
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ness ratio L./r.=30, the Young's modulus
ratio of pile to soil E./E.=10° and the
density ratio of pile to soil p./p.=4/3.

O O 4,0r
©lloio
O <> O S=4,0r
OO0
O QO i

S-é.OroS-a.Oro

Fig.2 Block plan of pile group

The present results of the single pile (1X
1) are sufficiently accurate from the results
of the exact solution with frequency. In the
present results of pile groups (2X2, 3X3, 4X
4), the real parts of the impedances agree
well with those of the exact solutions over-
all, but the results of the imaginary part
are inferior to the results of the real part.
The results of the proposed method are more
accurate than the results of the simple
method in the higher frequency range. The
simplified estimation of the impedances for
groups of end bearing piles has been verified
from comparison with the previous solutions
of others in the reference 6). Therefore, the
proposed estimation is available for both end
bearing and floating piles of groups and the
dynamic characteristics of pile groups can be
estimated readily and consistently in the
static and dynamic states.

Meanwhile the group efficiency of the
stiffness .K/,.K in the static case is inves-
tigated for a single pile to a group of 100
piles. Poulos™ has been found that the
deflection of the pile group tends to be
proportionally to the root of the number of
pile for the deflection of single pile and
this consideration is also reasonable for the
stiffness in the analogy of the area of the
surface foundation to the number of pile in
the square group from the suggestion of
Kusakabe. The results of the group efficiency
are shown with +/ n in Fig.4 for the same
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Fig.4 Efficiency factor of pile group
with v

parameter of Fig.3. It is seen that .K are
dependent on v n remarkably as n increases
and are influenced by the closest pile spac-
ing S. A convenient expression of the ef-
ficiency factor of pile groups is presented
for K., of long-flexible piles (L,>L.=
21.5r.). That is
f=p /D . (20)
C—1++n
The above estimation is verified in Fig.4,
and is valid for the number of pile and the
pile spacing of pile groups.

5 CONCLUSIONS

A simplified estimation of impedances for
pile groups has been proposed physically and
consistently in the static and dynamic
states. The proposed estimation is suffi-
ciently accurate and readily useful in the
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practical situation. A convenient estimation
of the efficiency factor of pile group in the
static case is also proposed in the closed
form including the number of pile and the
pile spacing of the group. This application
to the preliminary design and so on would of-
fer a good insight into the interaction be-
tween pile-soil-pile systems and structures
without much computational effort even if a
pile group consists of 100 piles.
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