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ABSTRACT: A concrete elastic frame system founded on several rigid plates at the soil surface is loaded by
an incident seismic wave. The wave pattern defined in terms of vertical acceleration is entered outside the
frame system and approaches the frame with the velocity of the Rayleigh wave. The rigid body boundary
conditions at the foundations are simultaneously satisfied by also considering the interaction through the
frame and the soil. Two different kinds of soil are investigated, homogenous and inhomogenous soil. The
response of the system is given at the rigid foundations and the elastic frame for a realistic earthquake pattern
(Friaul 1968). In addition, transfer functions are determined which relate the response of the foundations

and the frame to the incident wave at distinct points.

1 INTRODUCTION

The determination of the dynamic stiffness for rigid
foundations on the surface of the soil has been the
object of many publications in the past two decades,
of. Luco (1982), Wolf (1985). Different kinds of
numerical procedures were introduced to solve this
mixed boundary value problem. In this paper
the boundary value problem is extended to multi-
ple foundations including a concrete frame system,
Fig.1. The frame is founded on four rigid plates
and the interactive coupling through the soil is con-
sidered as well as the influence of the elasticity of
the frame. The loading function is defined in terms
of vertical acceleration of a seismic wave and ap-
proaches the foundation system with the velocity of
a surface wave (Rayleigh-wave). The applied seis-
mic load function is the acceleration pattern from
the Friaul earthquake of 1968. To control the mo-
tion, the wave was entered at a distance of 100 m
from the foundation system. The time delay of the
seismic excitation in the contact area foundation-soil
is considered by a sufficiently fine discretization in
space and time. For all calculations presented herein
the computer-system DYBAST, Sarfeld & Savidis
(1992) was applied. This computer code is based on
analytical and finite element theories with special
consideration of 3-dimensional soil structure inter-
action.

2 FRAME-FOUNDATION-SOIL SYSTEM

Fig.1 describes the system to be analyzed. The
concrete frame has a Young’s-modulus E,; = 3.10%
MN/m?, a mass density g, = 2.5 Mg/m? and a

(5),
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Figure 1: System under consideration

damping ratio B, = 0.01. The block foundations
(2.00 m x 2.00 m x 0.60 m) are assumed to be rigid.
The cross section area of the four concrete columns
is 0.40 m x 0.40 m, while the area of the horizontal
beams is:0.40 m x 0.60 m. The concrete columns are
equally spaced with 10 m in both directions x and
y. The frame has a height of 5 m. The calculations
are carried out for two different types of soil:
- homogenous soil
- inhomogenous soil
In case of a homogenous soil a constant shear-
wave velocity vso = 100 m/sec and a mass density
¢ = 2.0 Mg/m?® are assumed. The Poisson’s ratio v
= 0.25 and the damping ratio 8 = 0. The system
response will be determined at five dinstinct points
(1,2,3,4,5) marked with black circles in Fig. 1. The
term ’a(t)’ indicates the acceleration time function
of the seismic wave.
For the inhomogenous soil the shear-wave velocity
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is a function of the depth. At the surface the shear
wave velocity vgg = 100 m/sec. The mass density ¢
= 2.0 Mg/m3, the Poisson’s ratio » = 0.25 and the
damping ratio 8 = 0. The depth-variation of the soil
stiffness is defined by the following depth function
of the shear modulus:

G(z) =Go + (Goo — Go)[1 — exp(az)], 0
where Gy and G, are the shear moduli at the sur-
face and at infinite depth, respectively. The parame-
ter « is a constant of the dimension of inverse length.
This model is chosen so as to describe uniformly de-
posited cohesionless soils, Vrettos & Prange (1991).
According to Vrettos (1991) we introduce the degree
of inhomogeneity

Go
Eo=1——=— 2
0 1 G°°: ( )
and the inhomogeneity gradient parameter
Q
6= prn (3)

The homogenous soil represents then the limiting
case Z9 = 0. In the following analysis these parame-
ter are fixed to Z¢ = 0.7 and 8 = 7.65. These values
give a shear wave velocity of 182 m/s for z — co. Q
is the circular frequency of the excitation.

3 ANALYSIS PROCEDURE

The mathematical procedure to analyze the problem
described above can be splitted into two parts:

- concrete frame

- foundation-soil system.

First, the frame is idealized with the classical fi-
nite element method. Three dimensional beam el-
ements are applied to build up the stiffness matrix
K,:, the damping matrix C,; and the mass matrix
M,:. This leads to the following equation of motion
for the frame structure:

M,y + Cptiye + Kppuye = pat(t)a (4)

where the vector u,; represents the displacements
of the frame and p,:(t) describes an arbitrary time
dependent load function acting on the frame. The
index ’st’ denotes the concrete frame structure.
The second partial problem is the solution of the
dynamic interaction of the rigid foundation with the
soil. The procedure to solve this dynamic problem
results in a mixed boundary value problem for dis-
placements and stresses in the freefield and the foun-
dation area. Both, the boundary conditions (rigid
body) for the foundations and the equations of mo-
tion for the soil and the foundation must be simulta-
neously satisfied, including also the interactive cou-
pling through the soil for all foundations. The me-
thod used here discretizes the unknwon stresses at
the contact area of the foundations and the soil with

a stepwise constant stress distribution. To obtain
the response of the soil for a constant stress distri-
bution numerical integration based on Green’s func-
tions is used. Details are given by Savidis & Sarfeld
(1980) and Sarfeld (1992).
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Figure 2: Shear modulus depth-profiles
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Figure 3: Vertical Green’s function
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Real and imaginary parts of the vertical Green’s
functions (vertical displacement w due to vertical
point load P) at the surface of the homogenous and
the inhomogenous soil are shown in Fig. 3 as a func-
tion of the distance from the source r. The curves
emphasize the different behaviour of the inhomoge-
nous profile. Details on calculation of the Green’s
functi)on are given by Sarfeld (1992) and Vrettos
(1991).

Assembling the influences of all soil elements leads
to the flexiblitiy matrix of the soil F,. The inver-
sion of the flexibility matrix results in the frequency
dependent complex stiffness matrix K, of the soil

K,(:Q)u, = p,(iQ) (5)

where p, is the vector of forces applied to the soil.
The index ’s’ indicates the soil and 7 is the imagi-
nary unit defined as v/—1. The rigid body boundary
conditions are formulated by a transformation ma-
trix T. Performing the transformation T on eq. (5)
the effective complex stiffness matrix K,; for the
foundation-soil system is obtained in the frequency
domain. The relation including also the mass matrix
of the foundations is written as

[TTK,(iQ)T — Q*My]uy = TTp,(i)  (6)

[(K.£(iQ) — Q*M s uy = ps(i), (6a)

where the superscript 'T” denotes transposed, My
is the mass matrix of the foundations and py is the
load vector acting on the foundations. uy is the dis-
placement vector associated to the degrees of free-
dom of the rigid body motion.

Performing the Fourier transform on eq. (4), the
equations (4) and (6a) can be assembled at their
common interfaces so that we obtain

[K:(iQ) + C, — Q*M,] u; = p4(iQ). (7

This system of linear equations can be solved in the
frequency domain for a given p;. The index ’t’ de-
notes the entire system ’frame - foundation - soil’.
Finally, the inverse Fourier transform leads to the
solution in the time domain.

4 INDIRECT SEISMIC WAVE EXCITATION

For the description of a travelling wave along the
surface of the soil, an arbitrary wave time function
propagating in the positive nj-direction is defined
as’

oz =0 =ft-1zm)  (8)

where ¢ is time, c is the velocity of propagation, z; =
{z,y,2z = 0} the position vector and n; the unit
vector defining the direction of propagation. The
Fourier transform F{f} of this equation yields the
following relation
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f{f(:z:j, t)} = exp [——-kj.‘l!ji] F(ZQ) y (9)

where k; represents the wave vector with the compo-
nents Q/c{nz,ny, 0} and F(iQ) is the Fourier trans-
form of the wave function (8) for z; = {0,0,0}. The
expression exp [—k,-z ji] can be interpreted as the
transfer function in time of the wave function (8)
along the surface of the soil.

Equation (9) is used to express the wave influence
function, in order to determine the displacement
vector due to the indirect wave excitation. This
vector ut is evaluated for all points 'n’ of the soil
elements at the contact area foundation-soil.

exp[—(k,zl + kyyl)i] )

ui(z,,ys,2) = | exp [—(k,,z, + kyy,)i] F(Q)

exp[—(kzzn + kyyn)i]

(10)

The index ’s’ represents the soil whereas the in-
dex ’e’ represents the excitation. For an indirect
wave excitation the displacement vector of the soil
elements is defined as

u, = uf +us, (11)

where u] is the vector of the relative displacement.
By setting the right hand side of eq. (5) equal to zero
and substituting the relative displacement vector u}
in equation (5) we obtain

K,(iQ)u, = K,(iQ)us = p,(iQ).  (12)

Now, the load vector p, corresponding to the soil
elements is introduced for a given wave excitation.
Multiplying ps by the transposed rigid body matrix
T leads to the following expression for the excitation
vector of the entire system

ps(iQ) = TTK,(iQ)u’. (13)

The system of equations (7) is completly assem-
bled together with the seismic wave excitation so
that the resulting response includes the stiffness of
the frame as well as the interaction of the soil with
the foundation and the structure.
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Figure 5: Vertical amplification. Found. node 3

5 RESULTS AND DISCUSSION

The behaviour of a concrete frame system founded
on the soil depends on the elastic parameters of soil
and frame as well as on the geometry of the system.

For a seismic excitation the response of the sys-
tem in time domain is quite complex and it is dif-
ficult to clearly identify all the dynamic character-
istics. First, transfer functions are determined to
enlighten the dynamic response of the entire sys-
tem. The transfer function are directly related to
the incident wave excitation. The absolute vertical
displacements w are calculated for the output nodes
of the frame and the foundation. The graphs in
Fig. 4 and & show the vertical displacement of the
foundation (nodes 1, 3) for the homogenous and the
inhomogenous soil. Both foundations show a strong
amplification at the frequency of 10 Hz. A similar
behaviour, but even more pronounced, is found for
the frame nodes (2, 4, 5), Fig. 6 - 8. This indicates,
that an eigenfrequency for the horizontal beams ex-
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Figure 6: Vertical amplification. Frame node 2
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Figure 7: Vertical amplification. Frame node 4

ists at 10 Hz. This has a great influence on the
response of the foundations. Thus, in the frequency
range around 10 Hz the dominant vibration arises
from the elasticity of the frame.

All graphs of transfer functions show a lower
damping behaviour for the inhomogenous soil com-
pared to the homogenous one. Hence, the energy
dissipation due to radiation damping is not so ef-
fective for the inhomogenous soil. The vibration
response of the founations above 10 Hz shows a
strong interaction with the soil. For the inho-
mogenous soil the stiffness behaviour remains still
higher. The frame amplitudes for this frequency
range result from the elasticity of the beams so
that the differences between the homogenous and
inhomogenous soil become smaller.

Next, an analysis based on a seismic wave from
the earthquake in Friaul 1968 is applied. About 100
m distance from the frame system the seismic wave
is initiated. The propagation velocity is 100 m/s
so that the time delay to reach the first foundation
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Figure 9: Time history. Friaul earthquake

(node 1) is 1 sec. Fig 9 shows the time dependent
function of the acceleration of the seismic wave.
The dynamic response of the foundation (node 1)
is plotted in Fig. 10 for the homogenous soil and
in Fig. 11 for the inhomogenous soil. The results
of the frame (node 4) are illustrated in Fig. 12 and
13 for the two soil profiles. The response of the
foundation in Fig. 10 and 11 is quite similar for
both soils. The fact, that the inhomogenous soil is
stiffer has no essential influence on the response of
the time history acceleration. The comparison of
the response of the foundation to the seismic input
function shows only a slightly magnification only of
10 %. Due to the soil-foundation interaction the
damping effect of the semi infinite soil produces no
significant amplification.

Quite different is the dynamic response for the
frame. The influence of the resonant frequency at
10 Hz dominates the vibration, and the time history
has been strongly modified. The overall dynamic be-
haviour of the frame is defined by its own elasticity.
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Figure 11: Time history. Foundation node 1
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Figure 12: Time history. Frame node 4
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Figure 13: Time history. Frame node 4

However, the interaction with the soil reduces the
amplitudes, both in the frequency and in the time
domain.

For the frame, the differences in the response for
the homogenous and inhomogenous soil are neglisi-
ble.

6 CONCLUSIONS

The analysis of a concrete frame including the in-
teraction frame-foundation as well as soil-structure
interaction is presented for an incident seismic wave
excitation. A numerical procedure was developed
to solve the entire system ’frame - foundation - soil’
by considering the rigid body boundary conditions
of the foundations and the elasticity of the soil. Full
interaction for all components of the model can be
achieved to perform studies with various structure
- foundation - soil systems.

The determination of the transfer functions show
the strong influence of the frame on the response
of the foundation system, especially at the resonant
frequency of the frame. The radiation damping of
the soil has a reducing effect on the amplitudes of
the foundation and the frame. Moreover, a time
history analysis showed, that the vibration of the
frame strucure is dominant and is mainly affected
by its own elasticity.

The investigations showed the importance of con-
sidering the interaction effects through the soil for
the entire system. More studies are required to
obtain further informations about the dynamic be-
haviour for coupled structure - foundations - soil sys-
tems.
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