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Screening of surface waves by composite wave barriers

Elizabeth N.Its & Jong S.Lee
Clarkson Universiry, USA

ABSTRACT: Propagation of surface waves across a vertical wave barrier with non-rigid contacts inserted
between two homogeneous quarter-spaces is considered in this paper. An approximate analytical solution
based on Green’s function technique is developed to estimate the screening effect of the barrier. This
mathematical model describes a composite barrier which consists of the combination of high and low velo-
city layers. The screening effectiveness of barriers with various elastic parameters and boundary conditions are

compared and discussed in some details.

1 INTRODUCTION

Isolation of structures and machine foundations from
ground-transmitted vibrations by installation of wave
barriers has been attempted many times and has met
with various degrees of success (Barkan 1962;
Richart et al. 1970; Woods 1968). Many numerical
and experimental investigations have confirmed the
effectiveness of deep narrow open trenches for
reducing the amplitude of the transmitted wave.
Nevertheless, keeping trenches open for depths of
practical concern can pose a serious problem from
the engineering point of view. One way to overcome
this difficulty is to use in-filled trenches. Successful
application of bentonite-slurry filled trenches, for
example, was reported by Dolling (1965). In the
last three decades various numerical, experimental
and analytical techniques have been applied to study
the surface wave propagation across different types
of barriers or in-filled trenches (e.g., Aboudi 1973;
Segol et al. 1978; Leung et al. 1990; Ahmad and
Al-Hussaini 1991). The application of approximate
analytical techniques to study surface wave propaga-
tion in inhomogeneous media has been reviewed in
detail in Knopoff and Hudson (1964), Its and
Yanovskaya (1985) and Levshin et al. (1989).

Another way to achieve screening of surface
waves without compromising the stability of soil is
to employ a mixed type of barriers such as a combi-
nation of sheet pile wall and open or in-filled trench
(Richart et al. 1970). An example of such combina-
tion was reported by McNeil et al. (1965). How-
ever, no numerical or analytical investigation on the
composite barriers has been reported. The lack of
analytical studies on this seemingly promising
scheme for the wave screening is the direct motiva-

tion of this investigation.

In this paper the aproximate Green’s function
technique developed by Its and Yanovskaya (1985)
is employed to estimate the effect of such combina-
tion by considering the model of non-rigid high
velocity layer in a low velocity soil. This model
describes the combination of high and low velocity
obstacles. The former is modeled by differential
matrix operators which are derived -by using the
Taylor’s series expansion to relate the field quanti-
ties at each side of the layer, The latter ones are
modeled by non-rigid (unwelded) contact conditions
at both sides of the high velocity layer (Podypolsky
1963). Results of computation for combined obsta-
cles are compared to separate high and low velocity
obstacles. Dependence of the screening effect on
various factors such as the non-rigidness parameter,
width of the layer and incidence angle are examined.
Advantages and disadvantages of different models
are discussed in some details.

2 THE METHOD

Let a stationary Rayleigh wave be incident with the
angle 8, to a narrow vertical layer inserted between
two quarter-spaces denoted by indices 1 and 2 as
shown in Fig. la. Material parameters of the
quarter-spaces and the layer are
v,y 0 p0, 3@y @ 6@ and v,y o, respec-
tively, where v, and v® are the velocities of shear
and compression wave, respectively, and p® is the
density of the corresponding medium. The displace-
ments and stresses of R waves in the medium 1 and
2 can be written as follows (Its and Yanovskaya
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where o and B are the unknown reflection and
transmission coefficients, 8, is the transmission
angle, £@ is the wave number, and u® and @ are
the eigenfunctions of the Rayleigh wave. The com-
ponents of the eigenfunctions are given by
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where the upper sign corresponds to the incident and
transmitted waves (i =1,2) and lower one to the
reflected waves (marked by bar), A©) and p@ are the
Lame parameters. The eigenfunctions are assumed
to be normalized according to
J @ uOaDyO" gz = 25 cosh; . 3)
0

Now we assume that the layer is in non-rigid
contact with the host media and that a coupling
between surface and body waves which can arise in
the vicinity of the layer is negligible. In this case
stresses and normal components of displacement are
continuous at the both vertical boundaries and there
is a partial sliding along the boundaries proportional

to tangential components of the stresses (Podypolsky
1965) such that

U0y .2) = U, (0y.2)
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where U and T are the displacement and the stress
within the layer and m is the so-called non-rigid
parameter defined by
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Fig. 1a. The model of non-rigid layer.
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Fig. 1b. Physical equivalence of the model
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where 7 and [u are the width and the shear modulus
of a low velocity layer between the host medium
and the high velocity layer, respectively (see Fig.
1b). For a narrow low velocity layer, ie., & <1 (I
wavelength) L« u® or p, m can be determined

by
(6)

m

h= ‘:—:

The displacement and stress U and T in (4)
cannot be expressed in analytical form. One can
eliminate them by expanding U and T into Taylor’s
series with respect to x in the small vicinity of x=0
and x=h. The decomposition of x component of dis-
placement U can be written as
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Here we employ the quadratic approximation of
Taylor’s series. Advantages of the second order
approximation compared to a linear one was dis-
cussed in Its (1991). The Hooke relations and the
equation of motion in the layer can be used to

transform the first and second derivatives of the dis-
placement. The former ones have the form:
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Therefore, the first derivative can be expressed as
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Taking into account the boundary conditions (4) we
can rewrite the above relationship as
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Using the equation of motion for the x component,
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and equations (4) and (8), the second derivative can
be expressed as the following:
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In writing above, we assumed that elastic parameters
are laterally homogeneous throughout the layer.
Finally, combining (10) and (12), equation (7) can
be written as
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components of displacement and Stres
cast in the matrix form as follows:
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Complete expressions for the matrix operators Qw }
and QU are given in Its and Lee (1992) Operators
Q¥ and QU connecting the fields in the medium 1
and 2 can be obtained from Q> and Q@ by replac-
ing h with —h. The relationships (14) are to be
used for determination of reflected and transmitted
wave fields at the boundaries of the layer.

By introducing the vectors r*> and r@ as
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we rewrite displacements of the reflected wave in
the form
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Similar expressions can be written for other fields.

The Green function technique developed in Is
and Yanovskaya (1985) and Its (1991) is employed
then to determine the reflection and transmission
coefficients of Rayleigh waves across the layer. In
accordance with this technique the displacement ar
any point of the media 1 and 2 can then be deter-
mined by the value of field at the boundary by the
use of the representation theorem:
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where G/ and P(G}) are the Green function for sur-
face waves and the corresponding stresses for half-
space with parameters of the ith medium, respec-
tively (Aki and Richards 1980). Equations (14) and
(18) are the complete system for the estimation of
reflection and transmission coefficients of surface
waves. We first insert reflected and transmitted
fields of the form (17) into (18) with far field
Green’s functions and then integrate the resulting
expressions over y by using the stationary phase
method. Finally we obtain a system of equations for
the estimation of reflection and transmission
coefficients as follows:
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where the matrices K™, K¥), KD, and KY? may be
obtained from the matrices Q, Q¥, @, and QT,
respectively, by replacing 3/dy with — £¥sin0;. The
system of equations (19) and (20) can be used for
the estimation of reflection and transmission
coefficients of Rayleigh waves at an infinite vertical
layer with non-rigid contacts.

3 RESULTS AND DISCUSSIONS

The Green’s function technique described in the pre-
vious section is employed here to calculate reflection
and transmission coefficients due to the propagation
of Rayleigh wave across a vertical layer inserted
between two homogeneous quarter-spaces. In all

calculations we used the ratio of the reflection
coefficient to the transmission coefficient, which will
be referred as screen parameter y= lal/Ifl, to
describe the screening effect of the wave barrier. In
what follows results of computation are presented
and discussions are made:

3.1 Elastic parameters and boundary conditions

In order to study the effect of elastic properties of
the obstacle and boundary conditions on the screen
parameter three models were considered first: a high
and low velocity layer with rigid contact and a high
velocity layer with non-rigid contact. Three generic
materials - sand, concrete and bentonite-slurry - are
chosen to describe the host medium, high velocity
material and low velocity material respectively. The
elastic parameters of each medium are given in
Table 1. The total width of obstacles under con-
sideration was chosen at H=0.1/. Fig. 2 shows the
screen parameter y as a function of the incident
angle 0; for three different models of obstacles. It is
shown in the figure that for the same width and the
similar material contrast (with respect to shear velo-
city) the screening effect of the low velocity layer
(curve 1) is bigger than that of the high velocity
layer (curve 2) for small angles of incidence. At the
same time we can see a significant increase of the
screen parameter for the high velocity obstacle and a
decrease for the low velocity obstacle as the incident
angle is increased. It is noted that there exists a
sharp minimum of screen parameter in the vicinity
of GO degrees for the low velocity obstacle. After the
minimum ¥y increases very sharply with the incident
angle. It should be noted that it is impossible to
consider the propagation across the layer as a con-
sistent Rayleigh wave propagation across the two
boundaries since in the narrow layer between the
two boundaries there exists a very complex interfer-
ence. It is obvious, however, that the right-hand-
side boundary plays less significant role on the pro-
pagation because some part of the energy reflects at
the left boundary. At the sameé time the'effect of
L-H (low velocity to high velocity medium) boun-
dary is more important than H-L boundary for pro-
pagation for large angles of incidence because of the
critical reflection. Therefore, ore may suppose that
for the high velocity layer effect of the first and
more powerful boundary leads to a sharp increase of
screen parameter for large angles. For low velocity
layer effect of critical reflection at second boundary
also begins to play the same role, but this effect is
weaker because of the energy loss at the first boun-
dary, so even for identical contrast the curve 1 will
lay under the curve 2 for large angles of incidence.
The third curve in Fig. 2 corresponds to layer with
non-rigid contact. By this non-rigid layer we model
the composite barrier with the same total width
1 =0.11. This composite barrier consists of three
layers; that is, a high velocity layer (h = 0.05!) is
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Table 1. Elastic parameters

Medium | p(g/em®) | vi(kmiscc) | v,dkm/scc)
soil 2.0 0.5 2.0

concrcte 24 1.35 2.38

bentonite

-slurry 1.8 0.2 2.0

8.0 , R

Fig. 2. Screen parameter y as a function of an angle
of incidence 0, for (1) low velocity rigid layer, (2)
high velocity rigid layer and (3) high velocity non-
rigid layer.
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Fig. 3. Screen parameter y for a composite barrier as
a function of the non-rigid parameter m.

now sandwiched between two low velocity layers
(h =0.025!). It is shown in the figure that this com-
posite barrier gives higher screening than the low
velocity one, and the screen ratio does not decrease
as the incident angle increases; therefore, high velo-
city layer with non-rigid contacts as a screen has the
advantage of high velocity obstacle for big angle of
incidence and gives higher level of screening com-
pared to low velocity obstacle for relatively small
angles of incidence.

3.2 Non-rigid parameter

Influence of the non-rigidness parameter m on the
screen parameter Y was examined next. It was shown
(Levshin et al. 1989) that even a small increase of
the non-rigidness of the boundary resulted in a
significant increase of reflection (or decrease of the
transmission) of a Rayleigh wave. We expected to
get a similar result for the layer with non-rigid con-
tact. To validate this assumption we computed the
screen parameter of the high velocity layer with
non-rigid contact for normal incidence of wave for
varying values of non-rigidness parameter.
Nevertheless, results of computation did not com-
pletely confirm our assumption. The results of com-
putation are given in Fig 3 for normal incidence. of
Rayleigh wave to the layer with width A=0.1{.
Parameters of the layer and host medium are the
same as in Table 1. One can see that for variation of
m (which we interpreted as a variation of low velo-
city layer width &/l for a fixed ratio of shear moduli

fJup =1/7 ) screen parameter decreases with an
increase in &/l for very narrow low velocity layers
compared to a high velocity layer with rigid contact.
A further increase of k/I results in an increase in the
screen parameter in the interval under consideration.
This result may be explained as the following: for
small width of low velocity layers' the wave does
not feel them separately from high velocity obstacle,
but as a little smoothing boundaries of high velocity
layer. As a result, the screen parameter becomes
smaller than for sharp boundaries. As the width of
the low velocity layer increases, the effect of all
sharp boundaries becomes significant, and this leads
to a steady increase of the screen parameter. This
interpretation seems to be reasonable since we model
the low velocity layers by the non-rigid contact
where only m=h/u (but not h and [i separately) is
fixed.

4 CONCLUSION

An approximate analytical technique based on the
Green’s function method is developed to study Ray-
leigh wave propagation across a composite (high and
low velocity) wave barrier. The barrier is modeled
as a high velocity layer with non-rigid (unwelded)
contacts inserted between horizontally homogeneous

1991



quarter-spaces. Relations connecting the displace-
ments and stresses at two opposite boundaries of the
layer in the form of matrix operators are derived by
using Taylor’s series decomposition of the field in
the layer. Results of calculation for barriers with
various parameters are presented. It is shown that
the composite barrier can give a significant improve-
ment in screening surface waves over the perfor-
mance of a barrier with a single high or low velocity
layer.
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