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Optimum damping in base-isolated structures

Jose A.Inaudi & James M. Kelly
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ABSTRACT: Optimum viscous isolation damping for minimum acceleration response of base-isolated structures sub-
jected to stationary random excitation is investigated. Two linear models are considered to account for the energy dissi-
pation mechanism of the isolation system: a viscous linear element, and a Maxwell element, which are commonly used
models for viscodampers. The criterion selected for optimality is the minimization of the peak floor acceleration
response. The effects of frequency content of the excitation and superstructure properties on the optimum damping and

minimum peak acceleration response are addressed.

1. INTRODUCTION

Base isolation is today an accepted design alternative for
earthquake hazard mitigation for structures on firm soil.
Superior seismic performance can be achieved by means
of the introduction of a flexible set of isolators between a
stiff superstructure and its foundation. The benefits of this
design approach are not only complete preservation of the
structural system but also equipment protection during
moderate and strong ground motions. While the’ failure of
the structural system is prevented by guaranteeing a max-
imum deformation demand on the isolation system, failure
of sensitive equipment can be prevented by ensuring low
enough levels of floor accelerations.

Ground motion and structural system characteristics deter-
mine the deformation demand on the isolation system and
the floor acceleration response of the structure subjected to
ground excitation. Intensity of the ground shaking, fre-
quency content as well as maximum ground velocity are
factors of crucial importance. Natural frequencies of the
base-isolated structure and energy dissipation capability in
the isolation system are controlling factors for the
response. The relative displacement at the isolator level is
dominated by the response of the system in its first mode
of vibration. The superstructure damping capability has a
negligible effect on the damping of the first mode of
vibration of a base-isolated structure and consequently, the
isolator deformation can not be controlled by an increase
of the superstructure damping capability. However,
significant damping can be introduced in the first mode of
the structure by increasing the energy dissipation capabil-
ity of the isolation system. Damping, although not essen-
tial in the isolation phenomenon, is needed to keep the
isolator dispacements within limits in case of low fre-
quency ground motion. High-damping rubbers, lead plugs
and or added viscous or frictional dampers can give the

desired energy dissipation capability to the isolation sys-
tem and with that, a reduction of the demand on the isola-
tion system can be attained. On the other hand, the
energy dissipation mechanism of the isolation system has
a significant effect on the floor acceleration response.

Tsai and Kelly (1988) have shown that the response of
internal equipment on base-isolated structures in which the
damping matrix is non-classical can not be accurately
determined by the classical mode method. The high fre-
quency content is distorted by the classical mode method
and the use of complex modes is recommended to find
equipment response. Constantinou and Tadjbakhsh (1985)
have developed studies on the optimum fundamental
period of base-isolated structures under random excitation.
The work reported herein aims at determining optimal lev-
els of damping induced by viscodampers which will
render minimal acceleration response in the structure sub-
jected to ground excitation. A statistical approach and a
deterministic approach are followed. For the statistical
approach, the ground motion is modelled as a stationary
Gaussian random process and optimum damping is defined
as that which renders mimumum peak floor acceleration.
For the deterministic approach, the maximum floor
acceleration of base isolated structures subjected to
recorded ground motions is evaluated as a function of the
isolation energy dissipation capacity by numerical simula-
tion. Simple structural models were analyzed aiming at
identifying the main controlling parameters.

2. STRUCTURAL MODELS

The dynamic response of a n-story symmetric isolated
building subjected to unidirectional ground excitation can
be described using a floor lumped-mass model in terms of
relative coordinates by the following equation
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My+Cy+Ky+lf =-Mrw (6))

where M, C and K are, respectively, the mass, damping
and stiffness matrices of the superstructure; y is a vector
which contains the relative displacements of basement and
floors with respect to the ground, w represents the ground
acceleration, 7 = [10 --- OJand r" =[11 -+ 1]. f
represents the force that the isolation system applies on
the basement of the structure. This term includes both
forces resulting from deformation of the isolator and of
the energy dissipation devices acting in the isolation sys-
tem. The floor accelerations can be easily expressed as

¥=-MT1Ky-MI!Cy-M'1f ?)

Shear building models are used for the analyses in this
study. Figure 1 describes a typical structure used in this
study. A parametric definition of the structure allows the
assessment of the effect of the different parameters in the
phenomenon under study. The superstructure stiffness
matrix K is characterized by means of a single parameter
k which is selected to give a desired frequency to the first
fixed-base undamped mode of the superstructure Ty,. The
flexibility of the superstructure will be varied in this study
by changing the value of Tj,. The superstructure damping
matrix C is defined by assuming modal dampings in the
superstructure. In order to simplify this study all modal
damping ratios of the superstructure are assumed equal &
except for the the free-body mode which is taken as zero.

A large variety of devices with a wide range of mechani-
cal behaviors have been proposed to be used as part of the
isolation system. Natural rubber bearings made of different
rubber compounds, rubber bearings with lead plugs,
rubber bearings in combination with viscous dampers, fric-
tion dampers or elastoplastic dampers are among the most
commonly proposed devices. In the present paper, visco-
dampers modelled by linear models will be considered.
Extrapolating these results and conclusions to highly non-
linear devices is not a recommendable scheme. Series and
parallel combinations of linear springs and dashpots can
be used then to obtain different viscoelastic models for the
mechanical elements under study. At the expense of
greater complexity the number of springs and dashpots can
be increased seeking a more accurate agreement between
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Figure 1. Structural model used in this study.

the response of the model and the response of the real
mechanical device. In order to keep this study as simple-
as possible the models we will consider include at most
three parameters.

2.1, Kelvin element and Maxwell element

A Kelvin element, a linear spring in parallel with a pure
viscous damper constitutes the first model for this study.
The force in a Kelvin element f satisfies

f"oh"’%)"l 3

The dissipation of energy in harmonic excitation is linearly
proportional to the frequency of excitation for this model.
The parameter c, will be varied to study the effect of
viscous damping in the acceleration response of base-
isolated structures. k, will be selected to give a certain
first natural frequency w, to the isolated structure.

The second model for the isolation system to be used in
the present study consists of a linear spring in parallel
with a of Maxwell element, so called standard solid in
mechanics of solids. The element force f# is governed in
this case by

f"" o)’l“'fe (4)

fc"t‘l‘fe'gjﬂ (5)

The main mechanical characteristic of a Maxwell model is
its relaxation time v. The energy dissipated in a cycle in
this model increases with frequency for frequencies less
than 1/ and monotonically decreases with frequency for
frequencies larger than 1/.

3. ACCELERATION RESPONSE FOR MODEL 1

A formulation of the equations of motion in state space
form is convenient for developing the analysis. The set of
n second order differential equations (1) is converted into
a set of 2n first order differential equations by defining a
suitable state vector z7 = [y7 y7 ]. Considering eq.(3),
eq.(1) can be expressed in state space as

z=A'z+Blw ¥=D 2z ©)
- [ & ]

- _ — - | =M1 M-!

A=l VAR oMo c] 14 MK -M'C

- — o
C = C+diag(c,,0,..,0) K = K+diag(k,,0,..,0) Bl = [_J

The floor acceleration frequency response can be obtained
from eqs.(8 and 9) as
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Figure 2. Acceleration frequency response: Model I.
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Figure 3. Acceleration frequency response: Model II.
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Figure 2 describes the acceleration frequency response for
the top floor of a 4DOF structure (wy= x rad/s, Ty,= .6 5)
for different values of c,. The three curves correspond to
induced damping ratios in the first mode of & = .10, .30
and .60. It is worth noticing that only resonant responses
are suppressed by means of an increase in the isolation
damping. While the transfer function amplitude decreases
for higher damping at low frequency, it increases at high
frequencies. This effect is very important in the under-
standing of the phenomenon under consideration. If the
ground motion presents dominant low frequency content
heavily damped isolation systems will improve the perfor-
mance of the structure in terms of acceleration response
and isolation deformation, however if high frequency is
dominant in the ground acceleration signal, a heavily
damped isolation system will reduce isolation deformation
but will tend to increase the floor acceleration response of
the structure.

]._.“.(T)_ =1 - A1 Y
H (j5) ﬁl—)-w(ja) D'(jB I - A) Bl
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4. ACCELERATION RESPONSE FOR MODEL I

In order to study the effect that Maxwell viscous dampers
introduced in the isolation system have in the floor
acceleration response of the structure a state space formu-
lation is developed assuming that a certain number N, of
such devices with identical mechanical characteristics are
connected in parallel with the isolators. The force in the
i-th Maxwell element is denoted as f!. From eqgs.(4 and
5) the force in the isolation system will then satisfy

N‘
fc -2/:

im]

je*%fc'ﬁ};l a'Neg

fm' o Y1+ fe

@®

Since for the Maxwell model f, satisfies a first order
differential equation, a suitable definition of an extended
state 27 = [z f.] allows us to put the system in state form

7, ATz + Bl w X =DJ3, )
0 I 1} o)
Af=|-MK -M'C M BT = |-r
0

[0.0] [-B 0..0] -%

DF = [-MK -M-'C -M]

The poles of the system as a function of g and the relaxa-
tion time v can be obtained by solving for the eigenvalues
of A(Bx). It is interesting to note that the most
significant effect in the modal damping ratios is introduced
by ©. The smaller the © the most effectively the poles can
be moved into the left half of the complex plane. A
change in B can produce a redistribution of negative real
parts between the poles but no change in the trace of A
and consequently no change in the center of gravity of the
poles. An other important characteristic of this model is
that it introduces an stiffening effect on all the modes of
vibration increasing their natural frequencies.

The acceleration frequency response of the system under
Maxwell-type damping can be obtained as
H7(j@) - D/ (j& I - Ay B (10
Figure 3 describes the acceleration frequency response of
the top floor of a 4DOF structure (w= = rad/s, Tpp= .6 5)
for v = .10 and different values of B. The stiffening effect
of the Maxwell elements appears clear in the shifting of
the peaks of |H(j@)l. While for low frequency range the

transfer function magnitude decreases for higher B, for
high frequency it increases.



5. RESPONSE TO STATIONARY EXCITATION

The effect of damping in the acceleration response of the
base-isolated structure subjected to random excitation is
addressed in this section for both models. Optimum damp-
ing levels are defined as those which render a minimal
peak acceleration response of the base-isolated structure.

Given a linear system as that of eq.(6 or 9) subjected to
stationary excitation w(t) with zero mean and power spec-
tral density S, (@), the power spectral density of the floor
acceleration response Sy(@) can be obtained as

$:@®) = H(j&) 5, @) B (7) (n

The ground acceleration variance o} is given by
o2 = %f 5,(@) dd 12)

The floor acceleration covariance matrix can be obtained
as

E &7 - o= [ 55@) da (13)

The diagonal of the acceleration covariance matrix con-
tains the floor acceleration variances. If we assume that
the ground motion is a Gaussian random process the esti-
mation of extreme values of an output signal v of the
excited linear system over a certain period of time T can
be done according to the Poisson model for the barrier
crossings

T o,

—) ]

1
S AN 1)
niny o,

Vax =0, [2In(- (14)

where vy represents the probability that V. will not be
exceeded during an interval of duration T of the random
process, and o, and o, are the standard deviations of the
signal v and its time derivative (Vanmarke, 1883). Since
we are interested in the floor acceleration response, the
evaluation of floor jerks e, time derivative of the floor
acceleration, becomes necessary. The floor jerk covari-
ance matrix £ [e e’ ] can be obtained as

E[eeT]= —Zln'.-[ & H(j@) H' (&) S, (@) d& (15)

The diagonal of the floor jerk covariance matrix contains
the floor jerks variances.

Equations (13): (14) and (15) along with the expressions
for the acceleration frequency response of the system can
be used then to estimate the peak floor acceleration X e
of a base isolated structure as a function of the different
damping models in the isolation system. The optimum
value of damping parameter (cony Or B,.) can now be
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Figure 4. Peak floor acceleration: Model I.

estimated by minimizing the peak floor acceleration value
over the values of the damping parameter.

5.1. MDOF systems under band limited excitation

The effect of the number of degrees of freedom of the
structural system, the flexibility and damping of the super-
structure on the optimum damping is investigated in this
section. Two structural models are considered to analyze
the effect of number of degrees of freedom: a 2DOF sys-
tem and a 4DOF system. Their fixed base periods T, are
taken as .15 s and .45 s respectively. The value values of
the first natural frequency of the undamped base-isolated
structure is taken as w; = 3.1415 rad/s. The power spec-
tral density of the ground motion is assumed as

@) =S, -w,<B<w, (16)
with @, = 80 rad/s. Figures 4 and 5 show the results
obtained from for both models. The peak floor acceleration
(y=.5, T=40s) for the 2DOF and the 4DOF systems are
plotted at the top of the figure as a function of the induced
first mode damping ratio (Models I and II). As we can
notice, the optimum damping decreases with an increase in
the number of degrees of freedom for model I while for
the maxwell model it does not present high sensitivity to a
change in the number of degrees of freedom. Peak
acceleration values corresponding to optimum damping
levels augment with the number of degrees of freedom.
The peak factors (quotient between the peak acceleration
and ‘its standard deviation) are shown in the figures for
comparison. The peak factor slightly increases with the
increase in the damping parameter. The results shown for
model II correspond to © = .10s. Larger values of < render
larger peak acceleration response.

The effect of the superstructure flexibility I, and super-
structure damping &,, is analyzed in figures 6 and 7 for
models I and II. A 2DOF system is used in the analyses
and the optimum damping values are obtained for different
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Figure 6. Effect of flexibility and damping: Model L.
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Figure 7. Effect of flexibility and damping: Model II.

Table 1. Recorded signals used for dynamic simulation

Station name Direction | PGA | PGV

(8] [cm/s]
El Centro S90W 0.21 36.92
Taft N21E 0.15 | 15.72
James Road S40E 0.52 | 43.99

values of superstructure flexibility T, =.05,10,.15, .25 s
keeping constant superstructure damping &,, = .02 and for
different values of  superstructure damping
E, =.02,.04,.05,.10 keeping Ty =.15 constant. An
increase in the flexibility of the superstructure causes a
decrease in the value of the optimum damping as well as
an increase in the peak acceleration. This effect is particu-
larly noticeable in the viscous model. The effect of super-

structure damping has the opposite sense: the higher &,
the higher the value of optimum damping and the lower
the peak acceleration response.

6. RESPONSE TO RECORDED GROUND MOTIONS

In this section, the effect of isolation damping in the
dynamic behavior of base isolated structures is evaluated
by numerical simulation of the response of the structure to
recorded ground motions. The acceleration response of the
structure is computed for several recorded signals under
different levels of isolation damping. Optimal levels of
damping are defined as those that render minimum max-
imum floor acceleration response for a particular ground
motion. The isolator deformation is also computed. The
effects of the type of isolation system, the number of
degrees of freedom, the superstructure flexibility, the fre-
quency content of the excitation as well as the frequency
content of the excitation are evaluated. The signals used
in the study are listed in the following table and
correspond to the earthquakes of Imperial Valley (May 18,
1940), Kemn County (July 21, 1952) and Imperial Valley
(October 15, 1979) respectively.

6.1. Results for Model I and Model II

The effect of isolation damping in the floor acceleration
response is basically to reduce it up to 2 certain value of
damping from which an increase in damping determines
an increase in acceleration response. For a given struc-
tural system and a given ground motion there exist a
damping value which minimizes the floor acceleration
response while satisfying the constraint imposed by max-
imum deformability in the isolation system. Deformability
of the isolation system determines some bounds on the
allowable deformation demand. Once this safety require-
ment is met, the criterion for defining the optimum energy
dissipation capacity of the isolation system should be the
minimization of maximum floor accelerations. In order to
evaluate the effect of number of degrees of freedom,
superstructure flexibility in the optimum damping value,
maximum acceleration response spectra were generated for
different ground motions and different structural systems (
w; = n rad/s and E,, = .02). Tables (2) and (3) summarize
the results. There is significant variability of the optimum
damping values which it is mainly caused by the different
characteristics of the ground motions selected for the
analysis. This leads us to the first obvious conclusion: the
optimum damping value crucially depends on the ground
motion characteristics, basically in its frequency content in
relation to the fundamental frequency of the base-isolated
structure. There exist however some trends that coincide
with those obtained in previous sections for the random
model of the ground excitation. Those are basically the
following: the optimum damping value decreases with an
increase in the fundamental period of the base-isolated
structure and with an increase in the superstructure flexi-
bility. The higher the frequency content of the ground
motion the lower the value of optimum damping and the
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Table 2. Optimum damping for model I.

. NDOF | Tpp | & | max(X) | max(y,
Signal [fr ] [em/s? | [cm] :
El Centro | 8 33 | 174 9.6
El Centro | 4 6 27 | 153 10.6
Taft 8 Vi 19 77 5.1
Taft 4 .6 .18 | 69 52
James R. | 8 7 15 | 281 194
James R. | 4 6 16 | 262 183

Table 3. Optimum damping for model II.

. NDOF | Ty | EPF | max(X) | max(yy)

Signal [f 1 [emis? | [cm]
El Centro | 4* .6 23 | 153 10.9
El Centro | 8* N 24 | 176 10.4
El Centro | 4** 6 21 | 160 9.8
El Centro | 8** N 23 | 111 8.7
Taft 4= 6 09 | 9 6.3
Taft 8* g 16 | 96 52
Taft 4 6 .08 | 100 6.8
Taft g** a 12 | 106 58
James R. | 4* 6 17 | 279 17.0
James R. | 8* 7 14 | 298 18.4
James R. | 4** 6 17 | 273 15.7
James R. | 8** 7 16 | 217 16.2

*t=.10s **tw=.20s

better the performance of the base-isolated structure. This
effect should be expected since both an increase in the
flexibility of the superstructure will automatically reduce
the efficacy of the isolation system in decoupling higher
frequency dynamics. Furthermore, the force induced by
the viscodampers on the basement of the structure is "felt"
by all the modes of the structure and if the stiffness of
those modes is reduced the excitation of those higher
modes will increase. Although the results are not shown
in the tables, it was found that the optimum damping
value increases with an increase in the superstructure
damping &,, and that the low-pass filter characteristics of a
base-isolated structure are deteriorated in presence of a
heavily damped isolation system.

7. CONCLUDING REMARKS

A procedure for defining optimum damping in linear isola-
tion systems have been presented. The optimization
scheme has as objective function the peak floor accelera-
tion response for the base-isolated structure subjected to
stationary Gaussian excitation. Two simple linear elements
with different energy dissipation mechanisms have been
analyzed. The same procedure can be easily extended to
consider more elaborate linear viscoelastic models of
viscodampers. Summarizing the most significant findings

of this study we conclude the following points:

* The optimum damping has been obtained based on
minimum peak acceleration response to Gaussian excita-
tion. The minimization of acceleration variances renders
very similar values for the optimum damping values. This
is the case since the peak factor is not sensitive to changes
in the isolation damping.

* The effect of high frequency content in the excitation is
to decrease the optimum viscous damping. For both Kel-
vin and Maxwell models, superior acceleration reduction
can be attained under high frequency excitation and
optimum isolation damping design.

* The results have shown that the optimum isolation
damping decreases with an increase in the number of
degrees of freedom. An increase in the damping of the
superstructure produces an increase in the optimum damp-
ing value while an increase in the flexibility of the super-
structure tends to decrease the optimum damping and
amplify the peak floor accelerations.

* The low-pass filter characteristics of a base-isolated
structure are deteriorated by a heavily damped isolation
system. Special care should be taken in defining the isola-
tion damping when designing an isolated structure for sen-
sitive equipment protection.

REFERENCES

Bhatti M.A. and Pister K.S., "A dual criteria approach for

optimal design of earthquake-resistant structural sys-
tems", Earthquake Engineering and Structural Dynam-
ics, Vol. 9, 557-572 (1981).

Constantinou, A.M., Tadjbakhsh A., "Optimum charac-

teristics of isolated structures", Journal of Structural
Engineering, Vol. 111, No. 12, 2733-2750 (1985).

Kelly J.M., Tsai H.C.,"Non-classical damping in dynamic
analysis of base-isolated structures with internal equip-
ment", Earthquake Engineering and Structural Dynam-
ics, Vol. 16, 29-43 (1988).

Lai M.L,, Soong T.T., "Seismic design considerations for

secondary structural systems", Journal of Structural
Engineering, Vol. 117, No. 2, 459472 (1991).

Manolis G., Juhn G., Constantinou M., Reinhom A,

"Secondary systems in base-isolated structures: Experi-
mental investigation, stochastic response and stochastic
sensitivity”, Tech. Report NCEER-90-0013, July
1990,State University of New York at Buffalo.

Vanmarke E., "Random Fields: Analysis and Synthesis",

The MIT Press, Cambridge, Massachussets, (1983).

1998



