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Predictive control of structures with reduced number of sensors and actuators

E Lopez-Almansa. R.Andrade & J.Rodellar
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ABSTRACT: In this paper a control system using a reduced number of sensors and actuators is. prf)l?osed
for active aseismic protection of structures. The control algorithm has been obtained generating 1nd1v1du_al
control laws for each mode to be controlled according to a predictive control strategy. The time delay in
the control loop can be considered into this formulation. The efficiency of the control action is a.sse.ssed by
means of a numerical example: a full-scale 6-story experimental building undergoing seismic excitation.

1 INTRODUCTION

The interest in using active control systems for
seismic protection of structures has increased in
the last decade. The basic components in the
implementation of an active control system are
sensors, actuators and the control methodology
driving the system. One of the control
methodologies proposed in this context has been
the so called predictive control (Rodellar et al.
1987). It has been considered both in numerical
(Lépez-Almansa & Rodellar 1989 and Inaudi et
al. 1992) and experimental (Rodellar et al. 1990)
applications. In Lépez-Almansa & Rodellar (1990),
Lépez-Almanse et al. (1991) and Andrade (1992) a
mcthodical assessment about its efficiency has been
carried out.

The implementation of active control systems
on large structures may not be practical if the
number of sensors and actuators have to be equal
to the number of degrees of freedom (DOF) of the
model: The objective of this paper is to formulate
a predictive control law which can be implemented
for structures represented by multidegree of freedom
systems (MDOF) by using a reduced number of
sensor and actuator (s/a) devices.

2 MODAL EQUATIONS
The seismic motion of a structure actively
controlled and spatially-discretized by a n-DOF

mode] can be described by the linear differential
matrix equation

My(t) + Cy(t) + Ky(t) = f.(t) - Mrig(t) (1)

where M, C and K are the symmetric, constant and

positive definite mass, viscous damping and stiffness
matrices and y is the relative displacements vector.
f. is the control vector, r is a column vector whose
elements are 1 or 0 according whether the degrees of
freedom correspond to the direction of the seismic
motion or not and §, is the ground acceleration.

If the number of actuators is m, the n x 1 vector
f. in (1) is related to the m x 1 vector u (which
contains the m control signals in the actuators) in
the form

fe(t) = M Lu(t - 73) (2)

where L is a n X m matrix whose elements are 1 or
0 depending on the presence or absence of actuators
in the degrees of freedom. 7, is the lag time in
the control loop, so u(t — 74) is the control signal
generated at instant ¢t — 74 which results in an action
on the structure at instant ¢.

The equation of motion (1) can be analyzed by a
classical modal analysis approach via the eigenvalue
problem:

(K-w'M)$=0 (3)

Equation (3) is verified for n independent modal
vectors ¢y,...,¢, and for n natural frequencies
wi,...,wn. Mode shapes ¢,,...,¢, are arranged as
the columns of ®, referred as modal matrix.

Equation (1) can be formulated in modal
coordinates by premultiplying by 7. It works out
to:

M™i(t) + C™q(t) + K*n(t) = f2(t) + £7(1) (4)

where M*, C* and K* are the mass, damping and
stiffness matrices in modal coordinates given by
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K -3"K®
(5a)

M=%"M® C=%"C%

In (4), modal coordinates 9 verify

y(t) = ®n(t) (50)
The modal excitation forces f* are equal to

~&T Mrj, and, from (2), the modal control forces
f: are

fit)y=8"f (t)=8"MLu(t—7) (6)

M* and K* are diagonal and, if the system
is classically damped, C* is diagonal as well and
therefore, (4) can be separated into a set of n scalar
equations:

*
mi

+E8 )

m?>

Hi(t) + 2 € wi ni(t) + wf ni(t) =

where m? is the i-th diagonal element of matrix M*
‘and w; and §; are, respectively, the natural frequency
and damping ratio of mode 7. The n equations in
(7) can be coupled through the control force f;.

3 INDEPENDENT MODAL CONTROL

A procedure formulating the predictive control
strategy in the framework of independent modal
space control (IMSC) is described in this section.
IMSC consists of calculating control force fc in (7)
only in terms of modal components n; and 7;. In this
casc, equations in (7) are uncoupled and each mode
can be controlled independently. Obviously, mode
shapes are not modified and, since (5b), relative
displacements y are reduced if modal coordinates 7;
are.

By applying the predictive control strategy to
equation (7), the value of the modal control force
fz, at each discrete time instant k is given by

d
s == (05, o) (TR - 3K £k )
. ®
where D} (j = 1,2) and K; (7 =1,...,d) are,

respectively, modal gain and memory factors for
mode 1. d is the number of delay periods in the
discrete time control loop, i.e.

=7 (9)

T being the sampling period. In (S) d is the value of
d assumed to generate the control law (both values
can differ due to identification errors).

If only p modes have to be controlled, by
rearranging the order of the modes, the last n —
p control forces f; are zero. The first p scalar
equations in (%) can be writien together in matrix
form according to
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where vectors f and 1,, contain, respectively, p first
components of _f and 9. D}, D; and K p X p are
diagonal matrices whose elements are, respectively,
D;,, D}, and A‘

Since modal coordinates 7, are not measurable
and modal control forces f. are not implementa-

ble, equation (10) is not useful to be implemented di-
recily. In the next section it is shown how to express
the modal control forces in terms of the control
signals defined in (2) and in section 5 a procedure
to estimate the modal coordinates is ddscribed.

4 CALCULATION OF THE CONTROL SIGNALS

If there are as many actuators as degrees of
freedom (n = m), provided no different control
forces apply on the same DOF, then L = I and
(6) can be inverted to supply u:

u(k—d)= (87 M) fi(k) 11)

Equation (11) is formulated in discrete time
taking into account (9).

When n = m = p, (11) shows that it is possible
to generate control signals u in order to have desired
modal control forces f;, (i =1,...,n).

If the number of actuators is smaller than the
number of degrees of freedom (m < =), equation
(6) can not be inverted and it is not possible to
find m scalar values in u that supply the n desired
values of the components of f:. However, it is
possible to obtain the approximate solution of (6)
which provides the minimum error according to a
least square criterion.

As only the first p modes are controlled the last
n-—pcomponents of f; correspond to residual modes
and are zero. In this case equation (6) may be
written in the form

(fo(k) ... fa(k) O 0)" =
= Au(k - d) (12)

where A = #" ML. A is a full rank matrix
regardless of matrix L, that is to say, independently
of the actuators position.

iquation (12) can be separated in two parts
(provided p < n):

fi(k) =

(13a)



(¢p+1 ) ( uy(k - d) )
0=| --- | ML = An_pu(k —d)
¢, um(k — d)

(138)

where A, and A,_, contain, respectively, the first p
and the last n — p rows of matrix A.

Equation (12) has no solution, i.e., it is not
possible to find a value of u to generate any desired
value of f. But it is possible to obtain the value
of u which minimizes the quadratic cost function
H = (f:—Au)T ©(f:—Awu) where © is a symmetric
and positive definite weighting matrix. By imposing
that 8H /8w = 0, the following value of u is obtained:

u(k —d) = T f2(k) (14a)

where m x n matrix T' is equal to (AT @A)~ AT ©.
Since last n — p components of f; are zero (14a) is
equivalent to

u(k —d) =T f; (k)

where I, contains the first p columns of matrix I'.

If © is diagonal the i-th element 6; of the diagonal
corresponds to the mode ¢ and its value can be
chosen according to its relative importance. If © =T
(I being the identity matrix) I is the pseudo-inverse
of A. If fp4y = ... = 6, = 0 uncontrolled modes in
(13b) are neglected and only (13a) is considered. If
the number of actuators is equal to the number of
modes to be controlled (m = p) (13a) has an exact
solution given by

(14b)

u(k — d) = A f7 (k)

Since equation (12) is not verified, the last
n — p components of f. are not exactly 0 and
residual modes are excited by control forces, with
the consequent control spillover effects.

(15)

5 CALCULATION OF THE MODAL
COORDINATES

Modal coordinates 7; and 7; (i = 1,...,p)
involved in (10) need al least p displacement and
velocity sensors to be measured. In this paper it
is assumed that the number of sensors is equal to
the number of modes to be controlled p. Vectors
y and ¥ can be separated in measured and residual
(unmeasured) components according to

(16a)
(160)

(k) = Hpy(k)
y.(k) = H,y(k)

where y, and y, contain, respectively, the measured
displacements and velocities and y, and ¢, contain
the residual ones. H, and H, are matrices which
define, respectively, the degrees of freedom with and
without sensors. In (16) it has been assumed that

vp(k) = Hpy(k)
v.(k) = H,y(k)

the displacement and velocity sensors Are placed in
the same degrees of freedom.

By writing together (16a) and (16b) and taking
into account (5b) it results

(:,,83) = (%) ®q(k)=¥q(k)  (17a)

¥p(k) ) _ (H,,) k) —
(80) = () w0 = wirw)
n x n matrix ¥ can be split in four blocks: ¥p,
(pxp), ¥pr (p X1 —p), ¥y (n ~ p x p) and ¥,
(n — pxn—p). According to this, the first p scalar
equations in (17a) and (17b) can be written as

(176)

Bk = (4 ) (2] = Hpn, k) (150)
(

() = (1 %) (B0) = w0 (0

neglecting the terms W, 0, and ¥, 9,.. This is a
logical assumption since upper modes do not usually
contribute significantly to the response. Since
matrices ¥ and ® contain the same rows, block ¥,,
is non-singular and expressions (18) can be inverted
providing

my(k) 2 Wy (k) (k) = ¥ g,(k)  (19)

(19) defines the values of modal coordinates n,
and 7, in terms of measured quantities.
6 CONTROL LAW

The substitution of (10) in (14b) and of (13a) and
(19) in the resulting expression yields

u(k —d) =

d
~(6n G (3)) -3 Brjulh =) (20

where
G, =T, Di¥;} (21a)
G, =T, D3¥.} (21b)
E.; =T,KjA, (21¢)

It is important to note that the way from eq.
(10) to eq. (20) involves the number and location
of the sensors (p) and the actuators (m) as well
as the number n of degrees of freedom. Since all
these numbers can be different in the general case,
the aforementioned relations represent approximate
transformations between variables. Consequently,
the actual effect of the control action on each mode:
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will not be the one expected when designing the
independent modal control laws defined in (8). In
order to analyze the control effect, a procedure
based on relating the eigenvalues of the discrete
time controlled system with modal frequencies and
modal dampings is used in the next section. So the
uncontrolled and controlled modal characteristics
can be compared in order to extract the effect of
the real control on each mode.

If the motion of the controlled structure is not
described by a discrete medel like (1) but by a
coutinuous model (partial differential equations),
similar results are obtained (Meirovitch 1990).

7 EFFICIENCY CRITERIA

The equations of motion (1) can be solved in
discrete time (L.6pez-Almansa et al. 1988) by taking
the sampling period T as a discretization time
increment. This provides the following step-by-step
state space model

2(k+1)=A=z(k)+ Bu(k—d)+w(k) (22)
where the state vector z is given by

_ (k) .

()

A and B are constant matrices and w is a vector
related to the seismic excitation.

The motion of the controlled system is governed
in discrete time by (22), % given by (20). Defining
an extended state #, both equations can be written
together according to

2(k +1) = Az(k) + (k) (24)

I[ there are no differences between d and d, the
2n +md vectors Z and ® and the (2n+m d)x (2n+
m d) matrix A are respectively given by

=(k) w(k)
w(k —1) 0
k)= |u(k—2)| @E)=| 0 | (250
w(k - d) o
A 0 .- 0o B
_ |-6.F, -EB - -E., -E,
A=| o I - 0 o
0 0 .. I o
_ (25b)
G, =(G,, G.) F,= (‘f; | H“p) (25¢)

If d # d, quantities in (25) have similar values
(Lopez-Almansa 1988).

Fquation (24) demonstrates that thé controlled
system has a linear behavior.  Therefore the
efficiency of the control action can be assessed
through the eigenvalues of matrix A: if they are
inside the unit circle the system is asymptotically
stable. Besides, if there are no time delays (d =d=
0), such values provide information about the modal
frequencies and damping ratios of the controlled
system (Mickeleborough & Pi 1989).

8 NUMERICAL EXAMPLES

Scveral numerical analysis have been carried out
(Andrade 1992) in order to assess the efficiency of
the methodology proposed in this pap%r. In this
section some numerical simulations on a 6-story full-
size experimental building placed in Tokyo (Japan)
arc described. In Table 1 natural frequencies w;,
damping ratios ¢; and participation factors I'; of the
first three modes are shown. More details can be
found in Soong et al. (1991) and Andrade (1992).

Three control cases are considered, called I, II
and III. In I there is 1 sensor and 1 actuator
(m = p = 1) placed in the 6th floor, in II there
are 2 sensors and 2 actuators (m = p = 2) placed

Table 1
EXPERIMENTAL BUILDING
Modal Mode No. (i)
quantities 1 2 3
w; [rad/s] 4.11 1099 18.35
& (%] 1 1 1
T; [%) 77.20  11.71 452

in the 1lst and 6th floors and in IIl1 there are 3
sensors and 3 actuators (m = p = 3) placed in
the 2nd, 4th and 6th floors. In all these cases
no delays have been considered (d = d = 0). In
the case I only the first mode is controlled and in
the cases IT and III the two and three first modes
are controlled, respectively. For such controlled
modes the values of the parameters of the predictive
control strategy generating control laws in (10) have
been chosen according to recommendations given in
Andrade (1992). The motion of the building has
been described by a 2-D lumped mass model having
six degrees of freedom (each one corresponding to
the horizontal translation of each floor).

In Table 2 the maximum seismic displacements
and control forces are shown for the three control
cases (I, II and III) and for the uncontrolled
case (0). The excitation has been El Centro
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Table 2
SEISMIC RESULTS
i [om], w; [em/ s’
0 I II I
v1 1.03 0.95 0.48 0.48
Y2 2.61 2.47 1.56 1.13
Y3 3.98 3.79 2.64 1.67
Y4 4.82 4.37 3.27 1.86
ys 5.45 3.67 3.28 2.34
Ye 7.36 1.65 1.85 2.68
u - 398.11  239.90 62.63
Uy - - 278.87 183.09
u3 - - - 186.15
Table 3
EQUIVALENT FREQUENCIES
w! [rad/s)
Control case w} wh wj
I 7.44 16.00 18.87
1 7.74 15.21 19.84
eIt 7.46 12.47 18.87
Table 4
EQUIVALENT DAMPING RATIOS
& (%]
Control case & & &
I 5.74 11.49 27.61
IT 11.88 8.05 26.25
111 16.96 7.68 3.25

earthquake (California 1940). Floors are numberea
in such a way that y; and ys are the horizontal
relative displacements of the lower and upper floor,
respectively. A similar criterion has been considered
for numbering control signals ;.

Results frora Table 2 show that the three control
cases are efficient since the response is smaller than
in the case without control. The efficiency of the
three cases is similar but cases with more sensors
and actuators need smaller control forces.

Equivalent frequencies and damping ratios of the
three first modes for the control cases I, Il and I1] are
shown in Tables 3 and 4, respectively. Such values
have been computed according to the formulation
described in section 7.

Comparison between Table 1 and Tables 3 and 4
confirms that control cases 1. II and III are efficient
since an important increasing of frequencies and
dampings is reached.

9 CONCLUSIONS

The main conclusion is that following the
procedure described in this paper it is possible to
design control laws with a reduced number of sensors
and actuators providing a satisfactory global effect.

In the nume.ical example considered in this paper
it has been shown that an important reduction of
the response and a significant increase of modal
frequencies and damping ratios has been obtained.
If bigger numbers of sensors and actuators are
considered smaller control forces are required.
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