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Reliability problem of active control algorithms caused by time delay
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ABSTRACT: Time delay causes reliability problems for optimal active control algorithms which are widely
used in earthquake engineering. It is shown that under certain circumstances there exist critical values of delay
time for which the active control algorithms will fail. A distribution map and an explicit formula are given to
determine these critical delay times. The ratio of the critical delay time to the natural period of the structure
may be small, indicating that the time delay effect may not be neglected for small time delay. The critical delay
times may be classified as periodic families where the critical values appear periodically. For a given delayed
system, there exist at most two such periodic families. A new algorithm is proposed to take into account effects

of time delay.

1. INTRODUCTION

Considerable research effort has recently been devoted
to the application of structural control to improve
structural safety and/or functionality and to mitigate
seismic hazards during severe earthquake events. A
detailed review may be found in Soong (1988) and
Kobori (1988). The state-of-the-art of the progresses
and the research needs in this field are summarized in
Housner and Masri (1990, Editors).

The emphasis of most previous research has
been on the application of classical control theory
to highly idealized systems. Many problems of
practical importance have yet to be examined. The
present paper addresses one such important issue,
i.e. the reliability problem of the optimal active
control algorithms caused by time delay. In real
active control systems, time is consumed by acquisition
of response and excitation data, on-line computation
to obtain the required theoretical control force, and
application of the control force. Therefore, there
will always be a delay between the time at which
the control force is assumed to be applied and the
time when the control force is actually applied. This
delay is more significant in control of massive civil
structures. The time delay may be minimized Ly
emplo;ing more sophisticated hardware and software,
or its effects may be partly taken into account by
introducing higher order effects into the theoretical
analysis such as the interaction of the structure and
actuator. However, time delay cannot be elirninated
altogether with present-day technology.

It has been pointed out that time delays may not
only render an active control system ineffective but

may also cause instability of the controlled system
(Soong, 1988). However, no details were given as to
how the delay time actually influence performance of
the control system. The time delay effect has been
neglected in most applications of control algorithms
to civil engineering structures based on the argument
that flexible structures usually have a fairly long
natural period compared with the time delay, which
makes the delay effect negligible (Abdel-Rohman,
1985). In order to take the delay effect into account,
some compensation techniques have been proposed
in structural control. Chung, Reinhorn, and Soong
(1987) used a phase shift method in their experimental
studies of active control of seismic structures to
compensate for this effect. In their approach, the
control gains are modified such that the real system
and the ideal system have the same active stiffness
and active damping. It is reported that the phase
shift approach works effectively in their experimental
studies (Chung et al, 1987, 1989; McGreevy et al,
1988). Abdel-Rohman (1985) employed the truncated
Taylor-Series expansion method to design the control
forces taking time delay into consideration. It was
demonstrated that the active tendon mechanism used
is sensitive for delay effect during forced vibration.
Better performance of the control law may be achieved
if in the design of the control law the delay effect is
included. The approach is valid only if the dclay time
is small as compared with the system’s natural period.

In the present study, the reliability problem of
active control algorithms caused by the time delay
is investigated. A distribution map and an explicit
formula are given for the critical delay times for which
the optimal control algorithms will fail. It is shown
that the time delay effect cannot be neglected even
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for small delay time. A reliable control algorithm is
proposed to take into account effects of time delay.

2. FORMULATION

Consider a single-degree-of-freedom oscillator excited
by an external excitation f(t) and controlled by a
control force F(t). The governing equation of the
controlled system can be written as

mE(t) + ci(t) + kz(t) + F(t) = f(t) (1)

where m,c and k describe the inertia, damping and
stiffness properties of the system and z(t) represents
the structural response. The control force is assumed
to take the form

F(t) = pi(t — ) +yx(t - 7) (2)

which implies that the feedback control force consists
of terms proportional to the velocity and displacement
with constant gains (3,7, and the control force is
applied with a delay time 7. For the sake of simplicity,
it is assumed that the delay time is the same for
both velocity and displacement, but the analysis may
be extended to the case of different delay times for
different terms.

The control gains f and ~ are determined by
optimizing an objective function defined as

J= / "{%;(kx? +mi?) + R FYdE (3)
0

in which t; is the time duration of the excitation, and
R, and Ry are the weighting coefficients indicating
the relative importance between safety and economy.
The optimization procedure leads to a matrix Riccati
equation. An explicit expression for § and + is given
by Meirovitch and Silverberg (1983) as

B = 2wo(—wo + {/w} + R})
@

7 = woly/w + R;' —wo)

for an undamped system with natural frequency wyg.

3. CRITICAL DELAY TIMES

Insightful conclusions can be obtained by studying the
steady state response of the delayed system subjected
to a harmonic excitation

f(t) = foe™r* (5)

where fo and wy are the amplitude and frequency of
the excitation.

3.1 Steady-state response

Define the following qondimensional parameters:

wy T Y
6——0 'I‘—-—q,o /\—‘k
u= ! 8 = wyt = 2176 ©
=2(——-—<L = =2
2(6 f

where Tp and ¢ are respectively the natural period
and the critical damping ratio of the system. Then,
the steady-state solution of the delayed system may
be rewritten as

2(t) = Xoelr+#) @)
where X is the amplitude of the steady-state response

and ¢ is the phase shift caused by the system damping
as well as the time delay. It can be shown that

___flk _ B
Xo—m, b= arctan — (8)

where
A=1-—6"+Acosf+ usind

: (9)
B =2(5+ pcosf — Asind

In the special case where there is no the feedback
control force, i.e. 8 =~ = 0, the above results reduce
to classical ones.

Fig 1 shows the steady-state amplitude response of
a single-degree-of-freedom system with m = 1.0,k =
1.0, and ¢ = 0.05 for different relative delay times
7/Ty = 0.0,0.01,0.25, and 0.5. The feedback control
force is assumed such that 8 = 0 and v = 0.5. Note
that 7/Tp = 0 implies a regular system without time
delay. It is observed that all the curves for the non-
zero delay times show similar characteristics as that
for the non-delayed control force, but their magnitude
and position of the peak of the response amplitude
change with delay time. A small delay time does not
necessarily mean that its effect on the peak amplitude
response will be correspondingly small. In fact, the
amplitude response with smallest time delay 7/Tj in
Figure 1 has the highest peak.

3.2 Resonance frequency ratio

Resonance of the steady-state response is achieved
when the denominator of Xj in Eq. (8) becomes zero.
It can be shown that the resonance occurs if and only
if

(L— 822 + (2¢0)? = 22 4 2 (10)
and
§—p = (2k+1)r (11)
where k is an arbitrary integer and
- (1= 8)p— (2¢5)1
% = arctan I (12)
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The resonance frequency ratio § can be determined
from the equation

8 +ps:4+q=0 (13)
where -
p=4*1-p% -2 g=1-9% (149)
in which
p=l y=1 (15)

denote the relative control gains. Note that in the
above equation, both A and p depend on 6, the
ratio of the natural frequency of the system to the
frequency of the harmonic external excitation. It
can be shown that the possible number of resonance
frequency ratios may be zero, one, or two, depending
on system parameters and the feedback control gains.

3.3 Critical delay times

Let a resonance frequency ratio, if it exists, be denoted
by §*. The critical values of the delay time can be
explicitly expressed by

(k+ +¢0

(16)
where 1 is the pr1nc1pa.l value for Eq. (12) and k
is any integer which makes the so-obtained 7* non-
negative. It is clear that if there exists one critical
value of the delay time, there will be an infinite
number of critical values which appear periodically
with a period 1/8°. Such critical values are catalogued
as one periodic family of the critical delay times.
The number of such periodic families is equal to the
number of the resonance frequency ratios.

Distribution of the possible critical delay times can
be graphically illustrated by a distribution map in the
~" — 3 plane. This map can be determined, to large
extent, by the critical damping ratio ¢. A distribution
map for a lightly-damped system with ¢ < 1/v/2 is
shown in Figure 2.

In Figure 2. the g’
regions by curves
? =417~ %)
12 =1.

— v plane is divided into three

an

For a control system with the relative control gains in
region I, i.e. %2 > 1, there exists only one periodic
family of critical delay times. Region II in Figure 2
corresponds to the case where two periodic families
exist. For sufficiently small control gains as in region
ITI, there is no critical delay time. Therefore, for
sufficiently small control gains the time delay will
.not cause additional reliability problems for the active
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control algorithms. The radius of region III along the
v axis is given by

r=2(/1-¢? (18)

For an undamped system, the closed region shrinks
to the origin, which implies that critical delay times
always exist for the undamped system.

As an example, the peak-peak response versus
delay time for a control system with the relative
control gains in region II is given in Figures 3. The
system has unit mass, unit stiffness, and the critical
damping ratio ¢ = 0.05. The feedback control force
is assumed such that 8 = 0 and 4' = 0.2. The
external excitation has unit amplitude. The peak of
the amplitude response becomes unbounded at the
critical delay times. Two families of the critical delay
time are observed. For the response frequency ratio
6] = 1.2186, the observed relative critical delay times
are 0.03215, 0.8528, 1.1673, 1.6734, 2.4940, 3.3147 etc.
with an increment being 0.8206. For & = 0.7107,
these critical values are 0.6716, 2.0787, 3.4858, etc.
with a period equals to 1.4071. It is observed that the
relative critical delay time may be very small, which
challenges the conventional argument that the time
delay effect may be neglected if the ratio of the delay
time to the natural period of the system is small.

4. RELIABILITY OF ACTIVE CONTROL
ALGORITHMS CAUSED BY TIME DELAY

The optimal control strategy has been widely used
in structural control. In the optimal active control
algorithms, control gains are determined by solving
the Riccati matrix equation. In many engineering
applications, the Riccati matrix can be assumed to be
time-independent (Yang et al., 1987). Consequently,
the control gains are constant. When the feedback
control force is unsynchronously applied with a time
delay, the control algorithm will fail if the delay time
happens to be equal to or close to one of these critical
values and the dominant frequency of the excitation
is close to the resonance frequency.

Figure 4 presents such an example. The system
studied has unit mass and unit stiffness and is
originally undamped. The weighting coefficients
are assumed to be one. The amplitude response
of this uncontrolled system is unbounded at the
resonance frequency wy/wy = 1, as shown by curve
1. The controlled system with undelayed control force
determined by solving the Riccati matrix equation
or directly given by Eq. (4) has a bounded
amplitude response, as shown by curve II, which
is greatly reduced due to the application of the
control force. However, if the control force is now
actually applied with a time delay, say 7/Tp =
0.12 which is close to 7/Tp = 0.11836, one of the
critical values corresponding the resonance frequency



wyfwe = 1.897, the amplitude response becomes
nearly unbounded, as shown by curve III.

The phase shift approach has been proposed to
compensate for the time delay effects and satisfactory
results are reported in the experimental studies on
active control of seismic structures (Chung, Reinhorn,
and Soong, 1987). By this approach, the original
feedback control gains are modified such that both the
real system and the ideal system have the same active
stiffness and active damping. It can be shown that the
phase shift approach gives an exact solution for the
steady-state response of delayed systems. However, it
may not eliminate the reliability problem caused by
the time delay. For given v and S, there may exist an
infinite number of critical delay times. And, if they
exist, they remain in effect for the modified control
system. If the delay time is close to one of the critical
values and the dominant frequency of the excitation is
close to the resonance frequency, the control algorithm
will fail, as seen from the previous example.

The problem can be solved by directly optimizing
the performance index of the control system with the
delayed control force. In the case of steady-state
response, the performance index may be written as

J = R,X} + Ry (N + 12) (19)

For given delay time and harmonic excitation, control
gains § and < are obtained such that J in Eq.
(19) is minimized. The simplex method is employed

for the optimization (Himmeblan, 1972).  For
the previous example, the controlled steady-state
amplitude response by this approach is presented by
curve IV in Figure 4. As expected, this control
algorithm remains reliable for all the frequency ratios
and the amplitude response becomes bounded at the
frequency ratio wys/wp = 1.8 where the standard
control algorithm fails.

5. CONCLUSIONS

Time delay causes reliability problems for optimal
active control algorithms which are widely used in
earthquake engineering. It is shown that under certain
circumstances there exist critical values of delay time
for which the active control algorithms will fail. A
distribution map and an explicit formula are given
to determine these critical delay times. The ratio of
the critical delay time to the natural period of the
structure may be small, indicating that the time delay
effect may not be neglected for small time delay. The
critical delay times appear periodically if they exist.
For a given delay system, there exist at most two
periodic families. For given critical damping ratio
and sufficiently small control gains, the critical delay
time does not exist. The reliability problem caused
by time delay can be avoided by directly optimizing
the objective function for delayed systems.
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Figure i. Comparison of the steady-state amplitude respouses
of a linear SDOF system subjected to a harmonic excitation
for different delay times. wy = 1.0 and ¢ = 0.05. § = 0 and
v = 0.5. The relative delay time 7' = £ =0.0,0.01,0.25, 0.5.
Dashed curve represents the result for non-delayed control
(7'=0).
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Figure 2. Distribution map of critical values of delay time
for lightly delayed systems ({ < %) Region [: one periodic
family of the critical delay times; Region Ii: two periodic
families; Region III: no critical delay time.
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Figure 3. A representative curve for peak-peak response ver-
sus delay time for the case where two families of the critical
delay times exist. wy = 1.0, = 0.05; 8’ = 0.0,¥ = 0.2;
The observed critical delay times corresponding the resonance
frequency Z = 1.219 are: 0.0322, 0.853, 1.673, 2.494, and
3,315. Those corresponding the d e freqs
:—f = 0.711 are: 0.672, 2.079, and 3.486.

24

2153

d 73
~e

Figure 4. Comparison of the steady-state response curves for
controlled and uncontrolled system. wo = 1.0, = 0.0; 8
and « are calculated to minimize the perfi index with
R, = Ry = 1.0. I - uncontrolled system; II - controlled system
with non-delayed Riccati control force; I1I - controlled system
with Riccati control force delayed by 0.12; IV - controlled
system with a optimized delayed control force with f=0.12.




