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Seismic verification of foundation blocks in bridge structures
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ABSTRACT: the present paper studies a particular problem of soil-structure interaction which makes it possible to
check the foundation block for bridge structures. This is made up of two phases: the first provides a method for
calculating the springer reaction domain by analyzing the loads distribution under the assumption of a hinged arch;
the second calculates the failure multiplier for the block-soil set by means of plasticity theorems under the
assumption that the soil has a standard behaviour according to the Ziegler and Drucker's hypothesis.

The same algorithms allow the failure multiplier to be calculated during a seism, providing significant results
which confirm the reliability of the results obtained by other authors.

1 INTRODUCTION

In the case of arch-structures, verification of
foundation blocks is of considerable importance as
these are responsible for discharging stresses acting on
the structure to the soil. It is, therefore, essential to
know the worst load conditions and hence determine
the real safety coefficient. The springer reaction
domain can be defined using the components Rx and
Ry, then the crisis multiplier is calculated as the
smallest allowed kinematic multiplier.

Let us, therefore, consider the parabolic arch hinged
at the springers ,and let h(z) be the height of the
generic section and I(z) the relative moment of inertia
(fig. 1).
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Fig. ¥: Arch and springer reactions

In analytical terms:
h(z)= 4f41-7/12 @) =I./cdz) (1)

where a(z) is the slope of the tangent axis and I ¢ is the

moment of inertia of the cross section.
Below it is essential to know the line of influence of
the drift for vertical travelling forces given by:

hiz)= Jz4- 2123 + BY/ (8 £D) ()

which is an expression calculated using the generalized
Betti's principle.

From (2) it is possible to obtain its own weight
reaction BD=Rg of components:

Ve=gl1/2 Hy= gl*/8f 3)

Whereas, the seismic action generates in B a
reaction Rpr , if coming from the left to the right, and a
reaction RBl, in the opposite case. Given the
hemisymmetrical nature of the load these reactions
behaves isostatically.
Any heat variations generate a horizontal reaction Rpt.
If, At is the heat variation acting on the structure, by
applying the virtual works principle, we get:

Rp;= ISEL cAt/ 8§12 4
In order to determine the domain, the accidental
load a must be also taken into account. For the latter an

evenly distributed load in the most unfavourable
position is assumed.

2 THE DOMAIN Da

For the accidental load acting on the whole span the
reaction value is Rga/g, which is obtained by
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neglecting the thrust drop. Any two complementary
load conditions 1 and 2 give rise to two reactions R;
and Ry, such that their resultant is PQ (fig. 2).

—T—

-~

<+
—

fig. 2: the domain Da

A load adz at the abscissa z causes in B a dR with
components:
dV=adzz/Il dH= adzhf/1 (5)
and sloping on the horizontal by
tan B = - zA1hi(z) (6)

From (6) it can be seen how forz =1, itistgB=-a,
B =90°. Whereas for z=0 is

lim tanp = - 1{1%‘;‘)

z—0

(7)

Therefore for the accidental load extended over the
whole span, a load variation of -adz must occur
together with a slope of dR included in the interval 2

-oo < tanf < - 11 tan@yp) (8)

where ¢ A is the slope in A of hf(z).
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fig. 3: Variability field of the springer reaction

Eq. (8) corresponds, (fig. 3), to the two angles 1Q2
and 3Q4. However, as H < 0, dR in Q cannot be
included in the angle 1Q2. A null accidental load
corresponds to a null reaction and therefore a variation
can only be a +adz. Repeating the above argument, we
find that dR in P must be included in the angle 3P4.
The tangents P and Q at the boundary of the domain
Da are thus defined.

Let us now consider the load condition in fig. 4a. A
variation of this load may be either an elementary load
-adz acting on the section (0,z), or a +adz in the section
(a,1). The load -adz in (0,z) causes a dR contained in
the angle (tUz). For a load -adz applied in z=0 and
z=z, the dR slopes by the amount

arc tar(2z) < - 1/(1 hz)) (12)

A load adz in (z,1) causes a dR contained in the
angle (t'U3) in which t is the half line opposite t, if adz
is applied in z = za, dR is directed according to the
vertical line.

Any set of variations tadz thus causes a dR moving
towards the left of the half line t; it can be concluded
that if PU is the reaction induced by the extended load
from z = 0 to z = za, the varied reaction has its extreme
at the left of the tangent equiversal to t through U.

Another load condition that gives a reaction directed
according to rj can only associate a dR; with resultant
US in the opposite direction s of the PU. This can be
seen in fig. 4a considering that r; is outside the angle
(tUz) and outside the angle (3Ut'). Therefore, PU is the



maximum value that can obtain a reaction directed
according to ry.

In light of the above, it follows that the point U lies
on the boundary of D, and that the parallel to t through
U is the tangent in U at Dj.

With analogous processes to those above, it can be
concluded that the upper branch is related to the load
distributions with its end in z = 0 while the lower
branch is related to the load distributions
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fig. 4 complementary load distributions

with its end in z = 0 while the lower branch is related
to the load distributions with its end in z=1 (fig. 4b).
Two complementary load distributions, such as those
in fig. 4, correspond to two vectors PU and PV whose
resultant PQ is the reaction due to the load extended
over the whole span.

It is interesting to observe how the results reached
can also be applied to clamped arches. It is well-known
how for .non-smamm f/] ratios the springer reaction
eccentricity are.negligible.

3 FAILURE MULTIPLIER

Once the springer reaction domain is known, thes
foundation block subject to the springer reaction can be
studied by using the limit design methods for
calculating the failure multiplier relative only to the
increase in accidental loads. (Chen 1975, Franciosi
1979, Franciosi 1985). Let us consider the foundation

block in standard soil (Drucker 1954), whose intrinsic
curve is reduced to bilateral.
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fig. 5: crisis curves

In these hypotheses, the slide curve is a logarithmic
spiral with centre C and equation

r = 1,e0tane (1?)

The shear mechanism motion is a rigid anti-
clockwise rotation of the whole mass rotating around
the centre C and is unilateral. The Lagrange equation
for this can be written as follows:

B
YaLla +Lp=“{ Tynds (11)

where Ljis the work performed by the Rj relative to
the accidental loads and Lyp is that of the permanent
loads, including the weight of the mass and any loads
acting on the outside surface, t, represent the stresses
acting on the slide curve with components (Gp,Tp).
Eq.(11) comes from the rotation equilibrium equation
around C of all the forces acting on the mass. in
analytical terms:

YaMa +Mp=M; (12)

M, and Mp represent the moments around C of R, and
the permanent loads. The moment M, refers to the
stresses tp. For the latter we can write:

dM; =(-tcosp+osingrds=-10Dds (13)

where up = ( sing , cos@)t is the versor of the normal to
the bilateral in T'. Eq. (13) makes it possible to obtain
M; as a function of only the geometry of the problem:

6s 6a
M; = -f cr2do=-c f e 20tan¢ 49 (14)
8 8
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and finally

= ._ﬁ_Lz..(c 20 tan@ _ ¢ 264 tahe (15)
2tan@

s

with ¢ being the soil cohesion. The ¥, taken from Eq.
(11) refers to an arbitrary mechanism. In particular, it
depends on the coordinates of ¢ and the radius of r,.
The variables are reduced to 2 as a block vertex is
certainly a point belonging to the crisis curve.
Therefore, the problem is to calculate the lowest 7,
from all the possible m values by following the
orthogonal gradient method (Ciarlet 1985), with the
help of an automatic computation program.

4 SEISMIC EFFECTS

The failure multiplier of the block-soil set in the
presence of a seism can be obtained in a static form by
acting on the procedure of Mononabe (1929) and
Okabe (1926) who hypothesized a flat slide surface.
The passive resistance coefficient is obtained as the
difference between the coefficient determined in the
static phase and a decrease that takes the seismic action
into account. Others, such as Jamiolkowsky (1986),
substituted the static coefficient with the one calculated
under the hypothesis of a logarithmic crisis curve.
However, neither of the methods reach the real slide
surface to which the minimum ¥, is associated.

The v, in the presence of a seism is calculated using
the same procedure explained above while taking care
to study the problem from a static point of view. All
that is necessary is to take into account the acceleration
due to the seism by means of a rotation of the soil-
block equal to:

o = arctar{ay, /(g - ay)] (16)

while the specific weights of the soil and the block
become:

Y, = Y/ cos o ¥m = Ym/cCOS & (17)

The rotation of the block is hypothesized with

respect to the foundation vertex to which the lowest v,
is associated.

5 NUMERICAL EXAMPLES

Let us consider the supporting arch of the Bloukrans
bridge (S.A.) which has a span of 272 m, a parabolic
rise of 62 m and is hinged on the springers. The sectio
varies from 3.6 m at the crown to 5.6 m at the springers
and the foundations are made up of independent
truncated pyramid plinths. The reaction on the
truncated pyramid is the sum of the constant aliquot
due to the permanent loads ( of components Hp = 4511t
and V,, = 457 t), and the reaction corresponding to the
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accidental loads defined by the domain D,. If the
domain Da and the geometric characteristics of the
foundation block are assumed as input data, the failure
multiplier A, associated to every R, can be calculated.

Tab. 1 shows the failure multipliers v, for different
types of soil which highlight their variability as the
internal friction angle varies.

tab.1 tab.2
¢ ¢c=10c=2c=0
0 LIS - -
5 206 - - an 0 0.29g 0.5¢
10 494 - - ay 0 0.12g0.25¢
15 772 252 1.36 Caquot 8.17 - -
20 11.96 545 3.78 Mononabe 10.14 7.24 3.69
25 17.6510.60 8.78 S.GI 8.7 4.64 1.28
30 - 18.9316.66 Authors  6.21 322 2.1

The same algorithms used above allow the anchorage
block to be verified even in the presence of a seism as
discussed in sect. 4. In tab. 2, for the anchorage block
designed for the bridge over the strait of Messina

~(Jamiolkowski 1986) different values of v, are

considered.

6 CONCLUSIONS

The aim of this paper is to provide a model for
calculating the failure multiplier for some soil-structure
interaction problems. In particular, the paper analyzes
the passive resistance states developing behind the
foundation blocks . This is limited to so-called standard
soils with no stratum and, therefore, is one of the
verification methods that must support direct
investigation methods.
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