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Mechanics of elastomeric seismic isolation bearings

R.Shepherd & L.J. Billings
University of California, Irvine, Calif., USA

ABSTRACT: The availability of advanced computer codes prompted a finite element study of the mechanics of elastomeric
bearings under large compression and shear loads in anticipation that hitherto incompletely understood aspects of the behavior
of seismic isolator bearings could be clarified. This paper describes one aspect of this investigation. A low shape factor
multilayered elastomeric bearing for which experimental results are available was modeled in three dimensions using a
general purpose finite element program, MARC K.4 which includes formulation for elastomeric materials. Comparison with
earlier analyses in which the bearing was modeled in two dimensions indicates that the three-dimensional simulation provides
significantly improved correlation with the experimentally established behavior.

1 INTRODUCTION

The principle of isolating a structural system from ground
vibrations has been understood for many years, and
numerous successful implementations exist in which
bridges or buildings are mounted on resilient bearings.
However, it is only in the last twenty years that designers
have developed sufficient confidence to incorporate
isolation as the primary means of protecting structures
from earthquake-generated strong ground motion.

As with many engineering innovations, successful
application of the concept was delayed by difficulty in
developing reliable and predictable devices which would
not only possess the necessary characteristics at the time of
construction, but would preserve these properties
throughout the expected life of the structure. Greater
understanding of the nature of strong seismic ground
movements, and the ability to model structural systems
using computers, undoubtedly have benefitted the design
process, but the most significant recent advances have been
prompted by the development of a range of viable isolator
devices. These include various combinations of simple
rubber blocks, steel torsional and flexural beams, lead
extrusion elements and steel plates interlayered with
elastomeric materials [Buckle 1990].

One of the most promising of these devices appears to be
the laminated steel/elastomer bearing. By sandwiching a
series of relatively thin slices of elastomer between
horizontal steel shims, a composite block can be formed
possessing the desirable properties of large vertical stiffness
and large horizontal flexibility.

The design of laminated bearings is still at the stage of
progressive refinement. Elementary considerations in
typical use necessarily reflect a very conservative approach,
as the behavior of these bearings at high strains is
imperfectly understood. Current practice in the United
States involves verification testing of a proportion, as high
as ten percent, of the isolators manufactured for use in a
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given project. The tested units are then discarded. In
Japan, typically each isolator is tested before installation.
The objective in both cases is to verify the integrity of the
units in the light of the use of a somewhat simplistic design
process, and the undoubted difficulty in assuring quality
control of the complex production process.

2 FINITE ELEMENT MODELING

The mathematical model widely used to predict the
behavior of elastomeric bearings is based on small strain
elastic theory. Stress is assumed linear with respect to
strain and the vertical stiffness k, may be expressed as
k, = f - E.A
5 nt

where P is the vertical load, & the vertical displacement, A
the cross sectional area of the bearing, n the number of
elastomeric layers, t the thickness of each layer and E; an
equivalent compression modulus of the elastomer.

A similar approach leads to the horizontal stiffness ky,
being expressed as
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where F is the horizontal load, A the horizontal
displacement, and G the shear modulus of the elastomer.
Modifications of these expressions for bearings with
many layers have been suggested [Kelly 1990]. Clearly the
equations do not reflect the observed nonlinear behavior of
the elastomer, do not account for large deflections, nor do
they provide any information on the internal stresses and
strains within the bearing. If an improved understanding
of the actual behavior of multi-layered isolators is to be
developed, a more realistic mathematical model is needed.
One approach utilizes finite elements to represent the
elastomer and the steel shims. Since elastomeric bearings



experience large deformations and the elastomer behaves
nonlinearly, the finite element formulation must include
geometric and material nonlinearities. The most significant
problem is representing the elastomer and its material
properties. It is difficult to determine the material
properties experimentally and the analyses are sensitive to
the value of input constants.

The number of elements used to represent the continuum
can affect the outcome of the analysis. Many elements are
needed where the stress concentrations are high, but this
may not be known until after the analysis. Adaptive mesh
and rezoning techniques based on previous results are
justified. Many bearings with large numbers of layers,
some with thirty or more laminates, are now being used.
In such cases, the total number of elements may well be of
the order of several thousand, and the use of a very large
capacity computer is necessary.

2.1 Three Dimensional Analyses

A low shape factor bearing tested at the University of
California, Berkeley [Aiken 1989, Tajirian 1990] was
chosen for finite element analyses using MARC Analysis
Research Corporation’s MARC K.4 code. Pre-processing
of the geometry, boundary conditions, loads, and material
properties was undertaken using PDA Engineering’s
PATRAN 2.5. The top plate of the bearing was bolted,
therefore the boundary conditions are that the two end
plates remain parallel, the base plate remains fixed, and
constraints are invoked along the line of symmetry.

8-noded, 3-dimensional, isoparametric, brick elements
represented the steel and 9-noded "Herrmann" elements,
with 8 corner nodes and one extra pressure node,
represented the elastomer for a total of 5184 elements and
9900 nodes. [Each rubber layer received 6 elements
through its thickness. The results were sensitive to the
coarseness of the cover rubber mesh. Three elements in
plan were required through the thickness of the cover
rubber, otherwise the bearing behaved too stiff both
vertically and horizontally. The analysis was run on U.C.
Irvine’s CONVEX C240.

The rubber is represented in the code using a potential
function W(Iy, I5) studied by James, Green and Simpson
[1975] viz:

W(p.Ip) = Co(y -3) + Co1(I-3) +

C1@y - 3) + Cooy - 3% + C300; -3 3)

where Iy, I, and I5 are strain invariants defined by,
I = A2 + M2+ 2 @
L = M2 + M2 + a2
I3 = M2

and Ay, Ay, and A5 are the principal extension ratios. The
condition of incompressibility requires that,

I =M =1 ®)

and hence I is not a function of the strain. Thus, the
potential function W can be expressed as a function of I;
and I [Treloar, 1975].

The MARC code requires the five constants, C;q, Cpy,
Cq1» Cyp, and C3, as input. The material is then modeled
as nonlinear elastic. The problem of assigning values to
the constants has been recognized and some unique options
have been discussed such as setting Coq and Cyq to zero
and assigning values to C;q, Cy0, and C3q [Yeoh, 1990].
The difficulty lies in justifying the assigned values.
Assistance from the Malaysian Rubber Producers’ Research
Association (MRPRA) in Hertford, England was sought
regarding the above constants. On the basis of advice
received, elastomeric materials used in isolation bearings
typically exhibit some hysteresis, therefore, it is justifiable
to use simplified forms of the potential function W. It was
suggested to use the simplest of all options and set Cy; =
Cu = C/zo = C30 = (.0, and fit Clo from MRPRA’s test
data. Taking only the first term yields the Neo-Hookean

material model,
W) = Cyod; -3) ©

Cyo was chosen as 60.0 psi from MRPRA and U.C.
Berkeley test data and assigned to all elements representing
the elastomer. Hence, the elastomer was modeled as
linear, elastic and incompressible.

The elements representing steel were given a higher than
typical yield stress of 100,000 psi to prevent yielding in the
steel shims.

100 psi per increment vertical load was applied in 5
increments for a total compressive load of 500 psi over the
shim area or 15,900 Ibs (symmetry considerations allowed
only half the bearing to be modeled). A horizontal load of
125 1bs per increment was applied on the top plate in the
next 75 increments. Increment 80 was the last recorded
increment where convergence was achieved. This loading
is the full three-dimensional equivalent of 18,750 lbs
horizontal force with 31,800 Ibs vertical as was applied in
the experiment. The loading histories are shown in Figures

1 and 2. There was a slightly nonlinear response of
vertical  displacement with increasing horizontal
displacement.
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Figure 1. Horizontal displacement vs. load. 125 Ibs/
increment shear force applied in increments 6 to 80.
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Figure 2. Vertical displacement versus load. 3181 Ibs/
increment vertical load applied in increments 1 to 5.

2.2 Discussion of Results

The vertical displacement of the bearing under 500 psi
compression or 31.8 kips in full 3D is shown in Figure 3.
Comparing the F.E.M. displacement of 0.241 inches for
the top plate with U.C, Berkeley’s experimental results
which were a vertical displacement of 0.254 inches at
31.802 kips, showed agreement near 5%.

Vertical displacement under 500 psi

Figure 3.
compression.

The horizontal displacement under 500 psi compression
and 5000 Ibs shear is shown in Figure 4. Contact between
the cover rubber and lower steel plate was allowed for in
the analysis and occurs at the lower right and upper left
corners of the bearing and continues around the rear. The
finite element model’s horizontal displacement was 3.73
inches in increment 45 where the equivalent 3D horizontal
load was 10000 lbs. The comparable test result was
estimated to be 3.85 inches at 10000 Ibs shear force from
a plot of shear force vs. displacement with 31800 Ibs
compression. The F.E.M. result was 3% below this value.
The hysteretic effects of the rubber were not modeled and
hence not expected to be replicated.

Figure 4. Horizontal displacement under 500 psi
compression and equivalent 3D shear load of 10000 Ibs.

Figure 5 shows the horizontal displacement under 500 psi
compression and equivalent 3D shear load of 18,750 Ibs
yielding a horizontal displacement of 6.92 inches. The
comparable shear test result was estimated to be 6.40
inches at 18750 lbs from a plot of shear force vs.
horizontal displacement with 31800 Ibs compression. This
value is 8% below the F.E.M. result. The experiments
showed a stiffening effect above 150% shear strain which
was not replicated in this model since the simplest linear
elastic model for the elastomer was chosen. Higher order
terms in the potential function were set to zero yielding the
linear model. Using more constants in the elastomer
material formulation would create nonlinear material
behavior and the stiffening effect could be replicated,
provided the correct values for the constants were input.

Horizontal displacement under 500 psi
compression and equivalent 3D shear load of 18750 lbs.

Figure 5.

The maximum Y-component of stress in the steel plate
under compression is 7043 psi as shown in Figure 6. This
was compared with the value determined using expression
(7) for internal stress in the steel shims which does not
account for cover rubber [Stanton, 1982]:
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where t; and t, are the thickness of the elastomeric layers
on each side of the steel shim, t; is the thickness of the
steel shim, S is the bearing’s shape factor, and G, is the
compressive stress. Application of this expression to the
particular bearing examined yields a maximum stress of
5965 psi which is 15% less than the F.E.M. value.

The shear strain in the elastomer under compression is
shown in figure 7. The maximum value of 0.903 occurs
at the edge of the rubber-steel interface. Its value was
compared with that obtained from the expression for
maximum shear strain at the rubber-steel interface, viz:

Ye = 65¢, ®

where &, is the compressive strain. The above expression
yields a value of y, = 1.08 which is 20% above the
F.E.M. value. Based on 2D analysis described later, it is
expected that the strain value will converge toward the
theoretical value as the F.E.M. model is meshed more
finely in the region of maximum shear strain.

Figure 6. Y-component of stress in the steel under 500 psi
compression.

Figure 7. Maximum shear strain in the elastomer under
500 psi compression.
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The Von-Mises stress in the steel shims under the
equivalent 3D shear load of 10000 lbs, equivalent to nearly
130% shear strain, and 500 psi compression as presented
in Figure 8 had a maximum value of 30970 psi. The true
yield stress of the steel shims is of the order of 47000 psi,
hence the plates are not yielding at this loading. However
when the horizontal load reached 20000 1bs at 230% shear
strain in the last recorded increment, the Von-Mises stress
in the plates was 58750 psi as shown in Figure 9. As
stated above, the yield stress in the stee] was set at 100,000
psi for this analysis. It is expected that the steel shims will
yield under the applied loadings and 47000 psi was reached
under 15250 Ibs equivalent full 3D shear force or 188%
shear strain,

Figure 8. Equivalent Von-Mises stress in the steel shims
under 500 psi compression and equivalent 3D shear load of
10000 Ibs.

Figure 9. Equivalent Von-Mises stress in steel shims
under 500 psi compression and equivalent 3D shear load of
18750 lbs.

Figures 10 and 11 show the Z-component of Cauchy
stress in the rubber at increments 45 and 80 representing
125% and 230% shear strains respectively. The cover
rubber and some of the internal rubber had gone into 240
psi tension, while the inner elastomer was in compression,
taking up vertical load. Also it is noted that the tension
value of 240 psi remained nearly constant from increment



45 to 80, but the amount of rubber affected increased.
There were large stress concentrations at the rubber steel
interface at the outer edges of the bearing. This section of
the model requires further mesh refinement to fully
understand its character.

Figure 10. Z-component of Cauchy stress under 500 psi
compression and equivalent 3D shear load of 10000 Ibs.

Figure 11. Z-component of Cauchy stress under 500 psi
compression and equivalent 3D shear load of 18750 Ibs.

The above bearing was also analyzed without cover
rubber but with Cyq = 65.3 psi, representing a slightly
stiffer elastomer compound. The vertical displacement
under 500 psi compression was 0.286 inches which was
13% larger than the experimental result. The addition of
cover rubber gave a more accurate solution as long as
enough elements were present in the cover rubber. Three
elements in plan through the thickness of the cover rubber
was the minimum necessary to achieve a stable result. The
horizontal displacement at 10000 Ibs shear loading without
cover rubber was 4.4 inches , which was 14% larger than
the experimental result.
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2.3 Comparison with 2D analysis

Prior to the above analysis, two dimensional analysis were
conducted on the same bearing using 8-noded plane strain
elements. The 2D results for the bearing without cover
rubber in compression were twice as stiff as the
experimental results. Changing from a two-dimensional to
a three-dimensional analysis effectively alters the shape
factor of the modeled bearing to the true value. The actual
bearing’s shape factor was 2.25 as was the 3D FEM
model’s shape factor. However the two-dimensional
model’s shape factor was 4.5, twice the actual shape factor.
Clearly, future two-dimensional analyses require an
equivalent model that has the true 3D shape factor.

The effect of mesh refinement on the maximum shear
strain at the steel rubber interface was explored using
MARC Analysis Research Corporation’s Adaptive Mesh
technique. The mesh was adjusted so that it was very fine
at the steel-rubber interface, yet coarse elsewhere. The
maximum shear strain value improved to within 1% of the
value given by use of equation (8) above.

3 CONCLUSION

As a result of the investigation reported on the mechanics
of laminated isolation bearings, the distribution of stress in
the steel shims, the bearing’s axial stiffness, especially
when combined with shear loads, the horizontal stiffness,
and the effect of cover rubber on stiffness are becoming
more clearly understood. From the results obtained it can
be concluded that valid 2D analyses are difficult to achieve
unless the shape factor is truly represented.

The inclusion of cover rubber is necessary if good
correlation between experimental and theoretical
displacements is to be achieved. In general the stiffness
response of the bearing is not very sensitive to the mesh
coarseness providing that the cover rubber is adequately
represented, however the fineness of the mesh in Jocal
regions where the stress concentrations are high can
significantly affect the accuracy of the solution in those
regions.

Future investigations will address the problems of
predicting the onset of roll-out and determining how
boundary conditions represented by the top and bottom
plates being connected by bolts or dowels influences the
stress distribution. It is planned to further address these
possibilities and examine higher shape factor bearings.
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