Earthquake Engineering, Tenth World Conference © 1992 Balkema, Rotterdam. ISBN 90 5410 060 5

Dynamic characteristics of base-isolated shear buildings
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ABSTRACT: An analytical investigation on the dynamic characteristics, in the linear elastic range, of shear
beam type buildings supported on the laminated rubber bearings is carried out. The superstructure is modeled
as a continuum shear beam. The base raft forming part of the base-isolated building is taken as a mass
lumped at the lower end of the shear beam, while the effective linear stiffness is assumed for the bearings. In
addition to the base-isolated shear beam, close form solutions of two auxiliary shear beams with free-spring and
unconstrained end conditions are obtained for comparison. The frequencies of the base-isolated shear beam
are found to fall into a range bounded by those of the auxiliary shear beams. The higher modes of the base-
isolated beam are practically identical with those of the unconstrained shear beam and therefore orthogonal
to the horizontal ground motion. The contribution of higher modes toward the response of superstructure is

therefore negligible.

1 INTRODUCTION

Base isolation has become an increasingly accepted
technique to decouple a building from the horizontal
components of earthquake ground motion. Many in-
genious mechanisms have been developed to achieve
the decoupling effects, while carrying the vertical load
of the building, but only a few practical systems have
been implemented in real buildings. Among those im-
plemented, the laminated rubber bearing is perhaps
the simplest and most convenient.

It has been shown in previous analyses that seismic
response of base-isolated structures can be obtained
by modeling the superstructures as rigid blocks sup-
ported on isolation systems (Kelly (1990), Pan and
Kelly (1983, 1984)). Su et. al. (1989a) carried out a
comparative study of various base isolation systems
supporting a rigid mass. The rigid block assumption
results in a simplified system of single degree of free-
dom which is suitable for the preliminary design of
base-isolated structures.

However, the results obtained based on the rigid
block assumption are limited to stiff structures where
the influence of flexibility in the superstructure is neg-
ligible. Using discrete models, Kelly (1990) and Tsai
and Kelly (1989) investigated the effects of super-
structure flexibility on the response of a base-isolated
structure and its attached equipment. Su et. al.
(1989b) carried out numerical investigations for an-

other comparative study of performances of various
base isolators for shear beam type structures.

This paper will focus on the analytical investi-
gation on the dynamic characteristics of the base-
isolated continuum shear beam model subjected to a
horizontal ground motion. In addition to the base-
isolated shear beam, two auxiliary shear beam models
with free-spring and unconstrained end conditions are
also examined. For comparison, the dynamic charac-
teristics of the three types of shear beam are shown in
close form expressions. Conclusions are then drawn
regarding the shifting of natural frequencies and the
contribution of higher modes toward the response of
superstructure.

2 SYSTEMS CONSIDERED

One of the simplest but important continuum mod-
els for building structures is the shear beam model.
In this paper a building structure on a base isolation
system is idealized as a uniform shear beam. It is as-
sumed that the base-isolated structure behaves elasti-
cally, that the girders are rigid, and that the columns
do not deform axially. The mass of the base raft
on top of the elastomeric rubber isolation bearings is
lumped at the lower end of the uniform shear beam
while an elastic spring representing the equivalent ef-
fective stiffness of the isolation bearings is attached
to the lumped base mass.
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The idealized system for the base-isolated shear
beam model is shown in Figure 1a. Figures 1b and lc
show the configurations of two auxiliary shear beams
which are referred to later in the analysis as the
unconstrained shear beam and the free-spring shear
beam models, respectively.

The elastic stiffness of a shear beam is represented
by GA, where G is the modulus of rigidity and A,
is the effective shear area, while the mass per linear
length of the shear beam is assumed to be pA where
p is the mass density and A is the cross sectional
area. However, A, is related to A through A, = xA
in which « is the shape factor. The additional spring
stiffness and base raft mass due to the base isolation
system are represented by k; and my, respectively.

Note that the auxiliary models are actually the lim-
iting cases of the base-isolated shear beam model.
The unconstrained shear beam model of Figure 1b
can be obtained from the base-isolated shear beam
model of Figure 1a by letting k, = 0. The free-spring
shear beam model of Figure 1c can be obtained sim-
ilarly by letting m; = 0.

3 UNDAMPED EQUATIONS OF MOTION

Figure 2a shows the deformation of the base-isolated
shear beam subjected to a horizontal ground displace-
ment u,. The dynamic equilibrium for a segment
of the shear beams is shown in Figure 2b. Hence,
the equation of motion governing the undamped re-
sponse of the base-isolated shear beam to the hori-
zontal ground motion is given by

pAY (z,t) — GA,Y"(z,t) = —pAii,y(t)

where dots and primes indicate differentiation with
respect to time ¢ and space z, respectively; Y(z,t) is
the displacement response relative to the ground; and
ii,(t) is the horizontal ground acceleration motion.
Divided by pA, this equation can be simplified as

Y - Y = —ii,(t) (1)

in which ¢ = (GA,/pA)? = (kG/p)"/? is the shear
wave velocity propagating through the beam.

Assuming that the height of the shear beam is ¢,
the boundary conditions at the beam ends for z = ¢
and z = 0, respectively, take the form

Y'(£,t) =0 ()
and
my(Y'(0,t) +12,) + kY (0,1) = GA,Y'(0,1) (3)

in which m; is the mass of base raft and k; is the stiff-
ness of base isolators. These equations prescribe the
zero slope condition at the free end and the dynamic
equilibrium condition of the base mass as shown in
Figure 2¢.
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Let Y,(t) be the base displacement and v(z,t) be
the shear beam displacement relative to the base raft
as shown in Figure 2a, that is
v(z,t) = Y(x,t) - Y(0,t) = Y(z,t) - Y4(t).

Then, both the equation of motion and the boundary
conditions can alternatively be expressed in terms of
the relative displacement v

5 —ct" = (Y +1,)
The boundary conditions for v(z,t) are
Y(4t)=0, v(0,t)=0

Note that v'(z,t) = Y*(z,t), and the equation gov-
erning the motion of the base raft therefore becomes

my(¥y + 6,) + b Yy = GAW'(0,8) = GA,Y,

3.1 Limiting cases

The auxiliary shear beam models as shown in Fig-
ures 1b and 1c differ from the base-isolated shear
beam model only in the boundary condition at the
lower end of the beams. The auxiliary models are
actually the limiting cases of the base-isolated shear
beam model, and therefore their boundary conditions
can be obtained by letting m; or ky of equation (3)
approach zero separately.

o Unconstrained Shear Beam (ky — 0)
my(Ys + i) = GAY]
o Free-Spring Shear Beam (m;, — 0)

kal; = GA, )/b'

4 ANALYSIS PROCEDURE
4.1 Eigenvalue problem

The eigenvalue problem associated with the equation
of motion of equation (1) and the boundary condi-
tions of equations (2) and (3) for the base-isolated
shear beam can be obtained from the following ho-
mogeneous equation

Y -2y"=0 (4)
with the homogeneous boundary conditions
Y'(4,t)=0 (5)
and

my¥s + kYs = GA,Y) (6)



Separation of variables is used to analyze the free
vibration equation of the system. Let

Y(z,t) = ¢()q(t)

which, when substituted into equation (4), leads to
the following two ordinary differential equations:

j+wig=0 (7
and

" +2%=0 (8)
where

w? =X = \%G/p

in which w is the natural frequency of the base-
isolated shear beam and ) is a frequency parameter.
Similarly, after substituting and simplification, the
homogeneous boundary conditions of equations (5)
and (6) take the form

¢#)=0 9)
and
mpA?c?¢(0) ~ ky$(0) + GA,4'(0) =0 (10)

The homogeneous boundary value problem repre-
sented by equations (8), (9), and (10) constitutes the
eigenvalue .problem for the base-isolated shear beam
model. However, it should be noted that with the
presence of eigenvalue in the boundary condition of
equation (10), this problem is a special case of the
general eigenvalue problem (Meirovitch 1967).

Limiting cases

The eigenvalue problems associated with the auxil-
iary models differ from that of the base-isolated shear
beam model only in the boundary condition at the
lower end of the beams. Therefore, the homogeneous
boundary conditions of the auxiliary models can be
arrived by letting m; or k, in equation (10) approach
zero separately.

¢ Unconstrained Shear Beam (k, — 0)
mpA*c?$(0) + GA,4'(0) =0
o Free-Spring Shear Beam (m, — 0)
—ky(0) + GA,4'(0) =0
4.2 Eigensolution

The solution to the homogeneous equation (8) takes
the form
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#(z) = asin Az + bcos Az

in which a and b are constants to be determined from
the boundary conditions. Substituting this equa-
tion into equations (9) and (10), the non-trivial solu-
tions can be obtained from the characteristic equation
given by

1 ks

M GA,Jt

in which m = pAf is the total mass of the shear beam
above the base raft. The non-trivial solutions result
in an infinite sequence of discrete eigenvalues for the
base-isolated shear beam model of finite length.

For convenience, the characteristic equation can be
rewritten into a simpler form

tan M = — B¢ +
m

tan, = — A0, + -ofi (11)
where
0, =t = 2t
[
ky

a= m, and 8= % .
The dimensionless parameters a and 3 are the stiff-
ness and mass ratios of the base isolation system to
the shear beam, respectively.

If 6, denotes the nth solution to equation (11),
the corresponding nth eigenfunction ¢n(z) can be ex-
pressed by

¢n(z) =

bn(tan 8, sin A\pz + cos A, x)

o, . b,z 0.z
ba((—50, + 5;) sin =~ + cos 7 ] (12)

= bnnﬂ(x)

where the arbitrary scale factor b, = ¢.(0) is at the
base raft level, and therefore 7,(z) represents the rel-
ative mode shape of the superstructure with respect
to the base raft.

Limiting cases

The characteristic equation of a limiting case can
similarly be obtained from the requirement of non-
trivial solutions satisfying their corresponding bound- -
ary conditions. The characteristic equation and the

eigen functions for the two limiting cases are summa-
rized as follows:

¢ Unconstrained Shear Beam (k, — 0)
t_a'n 0r| = —.Bon (13)
én(z) = bu(tanfy,sin A,z + cosA,z)
On
ba[(—B65) sin 0"-71 + cos —-ef] (14)
bnnn(z)
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o Free-Spring Shear Beam (my — 0)

tanf, = = (15)
$n(z) = ba(tanby,sin A,z + cos A,z)
a, . .z Onz
= b,‘[(a—n-)sm—l--{—cos 7 ] (16)
= buna(2)

Graphic solutions of the characteristic equation
(11) of the base-isolated shear beam model are de-
picted on Figure 3 for a special case where the non-
dimensional parameters « and f are both taken as
0.1. This value of stiffness and mass ratios may
be considered representative for typical base-isolated
structures using laminated rubber bearings.

4.3 Remarks on frequencies

In Figure 3, the frequency solutions 6, of the free-
spring shear beam, equation (15), are located at the

intersections of the dotted line with the tangent func--

tion curves in the upper half plane, while those of the
unconstrained shear beam, equation (13), are located
at the intersections of the dotted line with the tan-
gent function curves in the lower half plane. The fre-
quency equation (11) of the base-isolated shear beam
is the combination of the above two limiting cases.
Its graphic solutions can therefore be obtained ac-
cordingly by combining the two dotted lines for the
limiting cases to form the solid line in Figure 3.

From Figure 3, it is clear that solutions to the fre-
quency equations (13) and (15) are the lower and up-
per bounds, respectively, for those to equation (11).
In other words, the frequencies of the base-isolated
shear beam fall between those of the unconstrained
and the free-spring shear beams.

Figure 3 also shows that the fundamental natu-
ral frequency of the base-isolated shear beam is very
close to but slightly lower than the first frequency of
the free-spring shear beam. The perturbation on the
fundamental frequency is caused by the addition of
the base mass and reflected by the (—f6,) term. Be-
ing in the neighborhood of the coordinate origin, the
magnitude of perturbation can be very small when
both B and 6, are small.

Furthermore, Figure 3 shows that the frequencies
of higher modes of the base-isolated shear beam are
very close to but slightly higher than the non-zero fre-
quencies of the unconstrained shear beam. The per-
turbation on the higher mode frequencies is caused
by the spring stiffness of the isolation system and re-
flected by the a/f, term. Since a is usually small
for base-isolated buildings and 6, grows rapidly, the
perturbation on the higher frequencies is very small.

It is also interesting to note that when the mass of
base raft approaches infinity, the frequencies of the
unconstrained shear beam approach those of a corre-
sponding fixed-base shear beam at 8, = (n —1/2)7
withn=1,2,...00.

In other words, Figure 3 reveals the basic reason
why an isolation system works. With the introduc-
tion of base isolation, the fundamental frequency is
lowered significantly from the fixed-base frequency of
6, = r/2, while the second frequency is shifted sub-
stantially higher toward the first non-zero {frequency
of a free-spring beam at around 8, = 7. The prop-
erty of frequency shifting can be judiciously utilized
to avoid the dominant frequencies of the earthquake
ground motion for general soil conditions. Using dis-
crete models, Kelly (1990) revealed similar properties
of base-isolated structures.

4.4 Orthogonal conditions

The linear second order differential-operators of the
special eigenvalue problem for the various shear beam
models used in this study can be shown to be pos-
itive and self-adjoint. It can further be shown that
the operators of the free-spring and the base-isolated
shear beam models are positive definite.

Arising from the positive definite eigenvalue prob-
lem for the base-isolated shear beam, the orthogonal
conditions with respect to mass and stiffness, respec-
tively, for the eigenfunctions corresponding to the dis-
tinct eigenvalues take the form

oA [ 8(2)61()dz + madi(0)8(0) = 0, i # ]

GA, /0‘ $i(z)()dz + ksbi(0)$;(0) = 0, i# ]

In addition, these orthogonal eigenfunctions can be
normalized with respect to mass as shown in the fol-
lowing:

i [ di(z)iz + mudi(0) = 1.0

This process results in a set of orthonormal eigen-
functions with which the Expansion Theorem can be
applied to obtain the response of the base-isolated
shear beam Y(z,t) by modal analysis.

Limiting cases

For the auxiliary shear beam models, the orthonor-
mal eigenfunctions with respect to mass and stiffness
derived from the base-isolated shear beam are sum-
marized as follows:
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¢ Unconstrained Shear Beam (k, — 0)

o [ 6:(2)8i(@)dz + mg(Oi(0) =0, i #3
GA, [ B()8)()dz =0, i# ]

y
pA [ $i(z)dz + mugt(0) = 1.0
o Free-Spring Shear Beam (m;, — 0)

pA/: $i(z)¢i(z)dz =0, i#]
GA, /01 #i(z)d;(z)dz + kyi(0)4;(0) =0, i #]

pA /0 ¢ 2(z)dz = 1.0

4.5 Remarks on mode shapes

The mode shapes of the three types of shear beams
can be evaluated from equations (12), (14), and (16).
For a typical value of ¢ = 0.1, equation (12) ap-
proaches rapidly equation (14), i.e. as 6, grows

—86, + 5’1 — —f36,

In fact, from the second mode upwards, the higher
modes of the base-isolated shear beam are practically
identical with those of non-zero frequency for the un-
constrained shear beam.

It is important to note that the higher modes of
the unconstrained shear beam are orthogonal to its
first mode that is a rigid body mode representing the
horizontal ground motion. Consequently, the higher
modes of the base-isolated shear beams do not absorb
energy resulting from the horizontal ground motion;
instead, they deflect energy through the property of
orthogonality. Using a discrete model, Kelly (1990)
revealed similar property for base-isolated structures.
Fan and Ahmadi (1990), Tsai and Kelly (1989), and
Su et. al. (1989) observed this property in their nu-
merical results showing the remarkably low level of
higher mode acceleration transmission to buildings
on laminated rubber bearings.

6 CONCLUSIONS

The exact analytical solutions are obtained for the
natural frequencies and mode shapes of three types of
shear beam models — base-isolated, unconstrained,
and free-spring shear beams — as shown in equations
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(11-16). The solution process takes into account fully
the influence of flexibility in the superstructures.

For @« = 0.1 and § = 0.1, typical values for
base-isolated buildings on laminated rubber bear-
ings, graphical results are obtained. The results
show that the frequencies of the base-isolated shear
beam fall into a range, to which the frequencies of
the free-spring shear beam form the upper bound
while those of the unconstrained shear beam form
the lower bound. They also indicate that the first
base-isolated frequency is very close to that of the
free-spring shear beam, and that the higher frequen-
cies of the base-isolated shear beam are practically
identical with those of the free-spring shear beam.

It is also shown that the mode shapes associated
with the higher frequencies of base-isolated shear
beam approach rapidly those of the unconstrained
shear beam, which are orthogonal to the rigid body
mode representing the horizontal ground motion.
Therefore, it can be concluded that when laminated
rubber isolators are used, the contribution of higher
modes to the response of superstructure is insignifi-
cant, and that such isolated structures in turn provide
effective protection to the secondary systems which
are usually of high frequency.
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Figure 1. Shear beam models: (a) Base-isolated shear
beam, (b) Unconstrained shear beam, and (c) Free-
spring shear beam.
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Figure 2. Response of shear beam to ground motion:
(a) Deformation, (b) Equilibrium of a segment, and
(c) Base raft equilibrium.
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Figure 3. Frequency solutions of the shear beam mod-
els (a =B =0.1).
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