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Finite element analysis of shear resistance of masonry wall panels

with and without confining frames
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ABSTRACT: Finite element models based on the smeared- and discrete-crack approaches have been devel-
oped to evaluate the shear resistance of masonry walls and masonry infilled reinforced concrete frames. The
capabilities of these models in capturing the strength and various failure mechanisms of such structures are
examined, and crucial modeling considerations are identified. It is shown in this study that the above models
can be used to reproduce experimental results with a high degree of accuracy. However, it is observed that
numerical results are highly dependent on the finite element idealization, and that the inelastic behavior
of an infilled frame is very sensitive to the shear strength of the mortar joints in the masonry infill.

1 INTRODUCTION

Masonry panels exist as shear walls in masonry
structures or infill walls for reinforced concrete
frames. While the former is generally designed as
major shear resisting members for modern rein-
forced masonry structures, the latter is often con-
sidered as non-structural components, such as
partition walls. However, both laboratory studies and
damage observations from past earthquakes have
indicated that the interaction of masonry panels with
reinforced concrete frames has a profound influence
on the performance of an infilled structure. In any
respect, the shear resisting mechanisms of masonry
walls with and without confining frames are not well
understood. In this paper, finite element models
based on the smeared- and discrete-crack approaches
are presented to evaluate the behavior of such
structures.

The analysis of masonry structures has been based
very much on the modeling techniques developed in
concrete mechanics and rock mechanics. Neverthe-
less, the behavior of masonry is far more complex
than that of concrete or rocks. While concrete does
not have the inherent planes of weakness introduced
by mortar joints, the behavior of rock mass is often
dominated by rock joints. On the other hand, in
masonry, it is important to consider the failure of
the mortar joints as well as masonry units. In this
respect, various modeling approaches have been
proposed and customized for masonry structures.
One approach is to homogenize a masonry assembly
and represent the average elastic properties by
means of an equivalent homogeneous model, in
which the nonlinear behavior of masonry can be

2581

modeled by the viscoplasticity theory with the vis-
coplastic strain of each constituent material evalu-
ated separately using an appropriate constitutive
model (Middleton et al. 1991). While the
aforementioned approach is computationally effi-
cient in that the finite element discretization does
not have to conform to the actual locations of the
mortar joints, it cannot adequately model refined
crack patterns in masonry assemblies. Hence, one
alternative is to use the smeared-crack approach,
which has been widely used to analyze the fracture
behavior of concrete structures. However, in this
approach, it is difficult to incorporate the influence
of mortar joints in the fracture behavior of masonry.
Hence, it has been predominantly used for modern
masonry that consists of hollow units and solid grout,
where the influence of mortar joints is relatively
insignificant (Ewing et al. 1988; Shing and Lotfi
1991). The most refined approach is to model the
masonry units and mortar joints separately with
continuum elements, which can be linked by inter-
face elements to allow for the shear-dominated
interface mechanisms (Anand and Rahman 1990).
While the modeling of mortar joints with continuum
elements is important for detailed stress analysis
(Rots 1991), it requires very refined meshes and is,
therefore, not suitable for analyzing large structural
components. In this respect, a more efficient alter-
native is to model mortar joints with interface
elements alone (Page 1978; Rots 1991).

In view of the above considerations, two types of
element models have been developed in this study.
One is a smeared-crack model that can be used to
simulate the distributed tension and compression
failure of masonry units and concrete members, and



the other is an interface model that can be used to
simulate discrete crack opening in masonry units
and mortar joints, as well as the interface behavior
between infill panels and the bounding frames. Both
the madel formulations and numerical results are
presented in this paper. Using these models, the
smeared- and discrete-crack approaches are
examined and compared, and the shear strengths
and failure mechanisms of masonry wall panels with
and without confining frames are analyzed. The
numerical results are compared with experimental
data, and crucial modeling considerations are iden-
tified.

2 CONSTITUTIVE MODELS AND FINITE
ELEMENT FORMULATIONS

2.1 Smeared-crack model

The smeared-crack approach has been widely used
to model diffuse cracks in concrete structures and is
a convenient way to model the tensile fracture of
masonry units. It is computationally efficient in that
it does not require a large number of degrees of
freedom to model crack propagation. In this study,
an elastic-plastic plane-stress model based on the von
Mises yield criterion and associated flow rule,
combined with a Rankine-type tension cutoff, is
adopted. The former is used to simulate the com-
pressive fracture of concrete and masonry. The
failure criteria are shown in Fig. 1, in the space of
principal stresses, 0, and ¢, . Tensile cracking occurs

when the tension-cutoff surface is reached. This
transforms the material behavior from elastic-plastic
to nonlinear orthotropic with the axes of orthotropy
parallel and perpendicular to the crack. Both fixed
and rotating crack formulations are implemented.
Appropriate post-peak softening rules are incorpo-
rated for tension and compression. The detail of the
modc;l can be found elsewhere (Shing and Lotfi
1991).

2.2 Reinforcing steel

Reinforcing steel is modeled as an elastic-hardening
plastic material. It is formulated in two ways. One is
a discrete bar element and the other is a smeared
overlay on top of a smeared-crack element, with the
strain compatibility between the steel and masonry
assumed in both cases. In either case, only the
uniaxial stress-strain relation in each reinforcing
direction is considered. Dowel action is not incor-
porated in the model, but can be approximately
accounted for by means of the shear retention
feature in the crack model.
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2.3 Interface model

Various plasticity laws have been proposed for
interface behavior. Plesha (1987) has adopted a yield
surface based on Coulomb friction for modeling the
slippage of rock joints. This model, however, does not
account for the tensile strength of an interface.
Stankowski (1990) has incorporated fracture energy
concepts into an elastic-softening plastic model for
gimulating the micro-fracture process of concrete.
Prat et al. (1991) has proposed a similar model based
on a hyperbolic yield surface. In all these models,
nonassociated flow rules and different work soft-
ening laws have been adopted. The interface model
used here is similar in concept to the above models,
but with a yield criterion, plastic potential, and
softening laws that are able to capture a wide range
of fracture behavior of concrete as well as masonry
mortar joints. The detail of the model has been
documented by Lotfi and Shing (1992), and its main
features are briefly summarized in the following.
Based on the plasticity theory, the relative dis-
placements o between the two contact surfaces of an
interface can be decomposed into an elastic
component a “and a plastic component a ® as
a=a’+a®” (1)
in which a={a, a,}", where a, and a, are the

relative normal and tangential displacements,
respectively. The elastic displacements are related ta
the interface stresses by the following equation:

a'=D""g @)

in which 0={0 )7, where 0 and T are the normal
and tangential interface stresses, the superposed dot
represents differentiation with respect to time, and
D = Diaglk,, k,], a diagonal matrix of elastic
constants.

The failure surface of the interface model adopted
is represented by a hyperbolic curve in the o-t
space, as shown in Fig. 2, and is expressed in the
following form:
F(o,g)=t*-p*(o-s)*-2r(c-5)=0 @)

in which ¢ ={u s r)7, representing the internal
variables of the material, where | is the slope of the
asymptotes of the yield surface, s is the tensile

resistance of the interface, and —r is the radius of
curvature at the vertex of the hyperbola. The
cohesion ccan be expressed as 252~ 2r s (see Fig.
2). The evolution of the internal variables g is
governed by the following work softening rules:

X1 X
§=8, 1—5-5-6—7

-B
r=r,+(r0-r,)e “3

(4)
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in which the subscripts 0 and r represent the initial
and residual values of the internal variables (see Fig.
2), a and B are material parameters that govern the
rate of deterioration of the frictional resistance in
the interface, and G} and G} can be considered as
the fracture energies related to mode I and mode II
fracture. When the curvature r is zero, the failure
surface is reduced to the Mohr-Coulomb criterion.

The work softening parameters x = {x, X, x3)}T
are defined as follows.

X, =<0>a’ ]
X, =(T-7T,)af ®
X3= (T~ T,2)Af ©

in which < - > is the Macauley bracket, and
T, =Vyp20?+2ro (10)
(1

T,,={un20?+2r,0

The above work softening laws utilizing the fracture
energy concept are an enhancement of the version
proposed by Stankowski (1990). The plastic dis-
placement is governed by a nonassociated flow rule:

. 12
a? =122 (12)
where the plastic potential is given by

(13)

Q(a.@)=nt?-(r-r.)(o-s)

in which n is a material parameter that governs
shear dilatancy. The above expression takes into
account the phenomenon that the shear dilatancy
decreases as the interface compressive stress
increases or when the contact surfaces are smoo-
thened by frictional work. The loading and unloading
satisfy the Kuhn-Tucker conditions:

F<0 , A20 Fx=0 (14)

The above formulations lead to the following
elastoplastic material law:

6=D"d (15a)
where
Dmn™D (15b)
D'P_ - —_—
—_ nTDm_pT£
oF 2Q IF g (15c¢)
13 2% T 5Em
<g> 0 (15d)
H = 0 -1,
O rrl —Trz

In computation, for a given relative displacement
increment Aa, the stress increment A0 is evaluated

by a generalized mid-point rule (Ortiz apd Popov
1985). The above model is implemented in 4- and
6-noded isoparametric interface elements.

3 MASONRY SHEAR WALLS

The analysis of a fully grouted reinforced masonry
concrete block wall is first presented. The wall was
tested as part of the U.S.-Japan Coordinated Pro-
gram for Masonry Building Research (Shing et al.
1989). As shown in Fig. 3, the wall was subject to a
constant axial compressive stress of 100-psi (0.689
MPa) and lateral cyclic load reversals at the top. The
reinforcing bars were uniformly spaced in both
directions, with five No. 7 bars in the vertical
direction and five No. 3 bars in the horizontal
direction. The wall exhibited a brittle shear failure
with distinct diagonal cracks. Four-node quadrilat-
eral smeared-crack elements with co-axial rotating
cracks and an overlay of steel reinforcement have
been used in the analyses. The first analysis has
been conducted with purely smeared-crack elements,
and the second with interface elements along one of
the wall diagonals in additional to the smeared-crack
elements. The lateral displacement has been varied
monotonically in both analyses.

The deformed mesh with interface elements is
shown in Fig. 4, and the crack pattern is shown in

" Fig. 5. The numerical results are compared to the

experimental load-displacement envelope in Fig. 6.
It can be observed that the result without interface
elements significantly overestimates the shear
strength of the wall. This problem of smeared-crack
models is caused by the continuum formulation of
the crack elements, as explained by Shing and Lotfi
(1991). The model with interface elements has a
shear strength close to the experimental result, but
appears to be more ductile than the test specimen.
This is partly due to the different load histories
applied in the analysis and in the test.

An unreinforced masonry wall with window and
door openings has also been analyzed to demonstrate
the possible failure mechanism of such a structure,
The brick units have been modeled with linearly
elastic quadrilateral elements, while the mortar
joints have been modeled with interface elements.
The mortar joints are assumed to have a tensile
strength of 50 psi (0.344 MPa), and a shear strength
of 50 psi (0.344 MPa) under a compressive stress of
5 psi (0.034 MPa). The wall has been subjected to
base acceleration in the form of a single-cycle sine
pulse that has a period of 0.3 sec. and an amplitude
of 0.8g. The masonry is assumed to have a weight
density of 150 pcf (23.6 kN/m3) and the wall also
carries a roof load of 700 lb/ft. (10.2 kN/m). The
total base shear developed is shown in Fig. 7 and the
deformed mesh is shown in Fig. 8.
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4 MASONRY INFILLED R/C FRAMES

A reinforced concrete frame infilled with brick
masonry, which was tested by Fiorato et al. (1970),
has been analyzed. The frame was subjected to a
monotonic in-plane lateral load applied at the top.
The concrete frame and masonry infill have been
modeled with smeared-crack elements. The flexural
reinforcement in the frame has been modeled with
discrete bar elements, while the shear reinforcement
modeled with an overlay of smeared steel. Three
analyses have been conducted: (1) without any
interface elements; (2) interface elements used to
model the frame-panel interfaces only; and (3)
interface elements used to model the mortar joints
as well as the frame-panel interfaces. It should be
noted for case (3) that to allow for a relatively coarse
mesh, the locations of the mortar joints are not
exactly represented. Furthermore, interface ele-
ments are inserted at critical locations in the col-
umns at approximately 45-degree angles to allow
shear failure. The deformed mesh is shown in Fig.
9, the crack pattern is shown in Fig. 10, and the
lateral load-vs.-lateral displacement curves are
shown in Fig. 11. It can be observed that the
interface elements are essential for capturing the
separation of the frame-panel interfaces and the
horizontal sliding failure of the mortar joints. Fur-
thermore, the numerical results are highly sensitive
to the shear strength specified for the mortar joints.

5 CONCLUSIONS

This study indicates that the failure of reinforced
and unreinforced masonry wall panels, with and
without confining frames, can be adequately modeled
with a combination of smeared-crack and interface
elements. However, the smeared-crack approach
alone is not able to capture the brittle shear failure
of a wall panel and to account for the influence of
mortar joints. The use of interface elements in a
discrete crack approach can improve numerical
results, but its usage requires the knowledge of the
location and orientation of the critical crack as a
priori. The behavior of an infilled frame can be
highly sensitive to the shear strength of the mortar
joints in the masonry infill, Such information
appears to be important in order to have an accurate
assessment of the seismic resistance of infilled
structures.
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Figure 1. Yield and failure criteria
for smeared-crack model
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