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A damage model for the seismic analysis of building structures

S.Oller, A.H.Barbat, E.Ofiate & A.Hanganu

Technical University of Catalonia, Barcelona, Spain

ABSTRACT: A procedure to evaluate the damage of reinforced concrete structures subjected to seismic actions is
developed. A local damage constitutive model based on Kachanov’s theory is developed. The structural model, which
includes the local damage constitutive law, is used within a finite element discretization. A global damage index
based on potential energy is deduced. Numerical examples are finally given.

1 INTRODUCTION

In the case that a urban area is affected by a strong
seismic motion, one of the most important problems to
be considered is the safety evaluation of the structures in
that area. This evaluation can be done using mechanical
and mathematical models to evaluate the damage pro-
duced to structures by earthquakes. The damage of rein-
forced concrete structures will hereafter be defined as the
degree of structural degradation that allows conclusions
about the future capacity of the structure to withstand
other important loadings. A "damage index” is defined
as the value of damage normalized to the failure level of
the structure, so that a value equal to 1 will reflect com-
plete failure [Park et al. (1987), DiPasquale and Cak-
mak (1989)]. In recent works Bracci et al. (1989) define
a damage index for structural members using a linear
combination between a ductility factor and an energy
factor. For complex structures the definition of a global
structural damage index is generally based on a weighted
average of the indices coresponding to the different mem-
bers of the structure.

This paper develops a procedure of evaluation of the
damage in reinforced concrete structures. In order to
do this, a local damage constitutive model, based on
Kachanov’s theory (1958) is used. A structural model
which inserts the local damage constitutive theory into
beam structures behaviour is developed in the frame of
the finite element method. Numerical simulation exam-
ples of the proposed analysis procedure are included.

2 DYNAMIC STRUCTURAL MODEL

The structure is modelized using the finite element me-
thod. The element used is based on Timoshenko’s beam
theory completed with a layered formulation (see figure
1). The generalized stresses are solved through C° la-
grangean finite elements with three degrees of freedom

per node in the plane case. The cross-sectional gener-
alized stresses obtained are decomposed point by point,
layer by layer, in stress tensors which are treated and cor-
rected by the damage model and afterwards recomposed
in the resultant sectional generalized stresses. These last
stresses are used then to compute the residual forces, in
order to iterate for equilibrium if necessary.
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Fig.l1 Timoshenko’s beam element with layers.

The displacement and strain fields are (Ofiate 1992)
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where the upper variables have the following meaning:
u — displacement vector of a point belonging to a cur-
rent section; £ — strain vector of a point belonging to
a current section; 4’ - displacement vector of the beam
finite element corresponding to the central axis of the
beam; & - generalized strain vector corresponding to the
central axis of the beam; §, L - transformation matrices.

The second order time derivative of equation (1) pro-
vides the acceleration field function of the beam central
axis acceleration field # = S: .
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On every differential surface dA of a given section of
the beam element act two accelerations % y % in the x
and z local directions which produce differential inertial
forces. Integrating over the cross-section, the inertial
sectional forces f, and the generalized stresses & are ob-
tained

fn={§} =/A{ :g}dA=/ApL§ z]{g}dA (3a)
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where ¢ = C:¢ and C is the constitutive stiffness ten-
sor. Using now the equations (1) and (2), (3a) and (3b)
become:

f,,:/ps:aam =/pS:S:i2' dA = p:i (4a)
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From the last relations the generalized density matrix §
and the generalized constitutive matrix C are

p =/p5’:SdA; C’:/S:C:SdA (5)
A A

Equations (5) can be integrated however complex is the
distribution of material properties in the section.

Following standard procedures, the equivalent inertjal
and elastic forces are

F, =/1v:j° ds =/N:;3:1‘1’ ds (6)
£ 4

F, =/B:[rd3 =/B:C':éds )
'] 4

where N and B are the shape function and derivative
matrices and £ is the length of the element.’

v=Na=>#'=N:a; é=LN:a=B:a (8)

With these last transformations, the nodal inertjal and
elastic forces become

F.=[N:p:Nds:4=M:i ; F.=|B:C:Bds:a=K:a (9)
/4 ¢

where M and K are the elemental mass and stiffness
matrices for the Timoshenko’s finite element beam for-
mulation.

3 CONSTITUTIVE MODEL FOR ISOTROPIC DAMAGE

3.1 General concepts

The solution of beam structures subjected to seismic
actions beyond the linear behaviour has been usually
treated using: (a) Theories based on plastic hinge for-
mation [Massonet and Save 1966]. This approach has
the inconvenient of admiting that the damage of a struc-
ture point is dominated by bending criteria, which is true
only for some very particular structures. (b) Simulation

2594

of beam structures based on the concept of plastification
bendig moment. This procedure is based on formulating
simplified curvature - bending moment constitutive laws
[Clough et al. 1965, Aoyama and Sugano 1968].

The last formulations started from representing the
behaviour of materials in an approximate form based
mainly on experimental studies. Today, it is required
that these formulations be thermodynamically sustain-
able. Between those which meet this latter requirement,
the so-called continuous damage theory is generally ac-
cepted as an alternative in the most complex constitu-
tive formulations [DiPasquale and Cakmak 1989, Oliver
et al. 1990]. Such a model can be seen in Mazars (1991)
where a column discretized in plane finite elements, sub-
jected to seismic action is calculated. The damage mod-
els have a rigourous but relatively simple formulation
strictly based on thermodynamics. They deal with the
non-linear behaviour by means of one or more internal
variables called damage variables which weight the losing
of secant stiffness of the material and are normalized to
an unit value which corresponds to maximum damage.
Figure 2 shows a unidimensional representation of the
behaviour of a point of a damaged material.

Fig.2 Local damage behaviour.

The model presented herein is a 3D damage constitu-
tive model based on solid mechanics and it has a single
internal variable. Therefore it is a local isotropic dam-
age model and it is based on Kachanov’s theory (1958).
In this model have been included later experiences such
as those of Simé and Ju (1987), Lubliner et al. (1989)
y Oliver et al. (1990). This formulation is a compro-
mise between the complexity implied in modeling con-
crete behaviour and the versatility needed when dealing
with dynamic problems. This insures accurate results
and low cost solutions for the non-linear problems to be
solved.

3.2 Characteristics of the model

The mode] is formulated in the material configuration,
for thermodynamically stable problems, with no tem-
perature time variation. For this specific case the subse-
quent mathematical form for the free energy is suposed,
where the non-damaged elastic part is expressed as a
scalar quadratic function of tensorial arguments

U(e;d) = (1 - d)To(e;d) = (1 - d) (5;—2;5:00:5) (10)



where the strain tensor € is the free variable of the prob-
lem, d (0 £ d < 1) the internal damage variable, mo the
density in the material configuration and C° the stiffness
tensor of the material in the initial undamaged state.
For stable thermical state problems the Clasius Planck
dissipation is valid, whose local lagrangean form is

= _ (L _Qg _‘_92
_m-(moa ae).e addzo (11)

This expression for the dissipation allows the following
two considerations: -

a) In order to guarantee the fulfilment of the Clasius
Planck inequation, the multiplier of & which represents
an arbitrary temporal variation of the free variable, must
be null (Colleman’s method). This condition provides
the constitutive law of the studied damage problem:
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b) Considering the last equation, the dissipation is now

Zm = -%%d: Yod >0 (13)

The damage yield criterion is defined as a function of
the free energy of the undamaged material, expressed in
terms of the undamaged principal stresses o?, as
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where the terms of the above equation have the following
meaning;:
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In these equations (‘I’?,c) [, Tepresent the part of the free
energy developed when the traction/compression limit
is reached and (tz) = 1(|z| £z) is McAuley’s func-
tion. Taking into account that the traction/compression
strengthes are f, = (‘IJ?EO)}/2 and f, = (‘Ilgl'7°)lL/2 the
damage yield function can be written, according to figure

3, as
3

F=6-fo=[1+r(n-1LI> (69" -f.<0 (15)

Fig.3 Damage Yield in the principal plane ¢; — 5.

with n = f./ f;. This damage yield function, expressed in
the non-damaged principal stresses space, allows a great
choice of distinct solutions. The advantage of the yield
criterium (15) is that any yield function F can be used al-
ways when homogenous and of first order in stresses, like
Mohr-Coulomb, Drucker-Prager, Lubliner et al. (1989),
etc. The form given by equation (15) fulfils the above
requierements; besides, is simple and satisfactory in re-
sults within the work range used with this model and
therefore will be used henceforward as the scalar expres-
sion defining . An expression entirely equivalent to (15)
proposed by Simé (1987) with the aim of simplifying the
mathematical deduction of the damage variable of the
model is the following:

F=G@)-G(f.) <0 (16)

where G(x) is a scalar monotonic function to be deter-
mined.

The following mathematical form is used to deduce the
damage internal variable evolution rule:

oF 9G(a) .
—_— = 1] ; = 17
a‘-, Yl aa ) n fC ( )
Like in plasticity, there is a consistency rule for a point
subjected to a damaging process. This is

d:f;

i o 2 o . 6& -0 a(_T .
F=02G6@)=G(f)=>b=fc=i=p75:d =ﬁ:C°.e (19)
Substituting this last equation in (16) and afterwards in
(13) we obtain the following expressions which formulate
the temporal evolution of the damage and dissipation

variables:
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The loading/unloading condition is derivated from the
relations of Kuhn-Tucker formulated for problems with
unilateral restrictions: (2) 7 > 0 ; (b) F < 0 and (c)
nF = 0. From these, if ¥ < 0 then the third condition
imposes 7 = 0 and if 7 > 0 then the same condition
requires that F' = 0.

From the diverse alternatives for defining the function
G(x), the following was chosen

~1-8%
Gl =1-77 (22)

where G(x) describes a function like the one presented
in figure 4, so that it gives for x = x* the compression
initial yield tension G* and for ¥ — oo the final strength
G — 0. Thus, by running all the path, the point will have
dissipated an energy equivalent to the specific fracture

energy.
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In this paper an exponential function obtained by O-
liver et al. (1990) was used

G(x) =

x'eA(l—‘xx‘-) H

G(x)=1—";'e‘(“‘x’*) (23)
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Fig.4 Reprezentation of the chosen G(x).

For an unjaxial traction process under monotonjcally in-
creasing load, the temporal dissipation change is given

by (11), with & = noy, Bo = 36, E%, = &l = 2o
[ntegrating (11) in time we can calculate the total dissi-

pation at the end of the uniaxial traction process as:
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Making the same hypotheses for an uniaxial compression
process, and postulating that parameter A must be the
same in both cases it is deduced that
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The value of traction maximum dissipation =;°*" is an
input of the problem and is equal to the fracture energy
density gy, parameter derived from fracture mechanics
as gy = Gy/I¢, where I is the characteristic length of
the finite fractured domain (Lubliner et al. 1989).

From (12), the temporal variation of the stress tensor
and finally the unsymmetric tangent constitutive tensor
C? of the damage model can be deduced as

6=Ce+C":¢; C":%%d:—cnd (28)
e=(C%) a_(cl"’zd- >6= C’e-—-l—:—i:;a (29)
s {go_ L 86@)[( 95 y
a-{C’ o3 o [(ado.c")@vJ}.s (30)
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8.8 Global damage indices

The starting point for deducing a global structural dam-
age index is equation (10), which relates the damaged
part of the free energy ¥ with the non-damaged elastic
free energy ¥o. In order to find a global index, a similar
expression is deduced by integrating (10) over the entire
volume of the structure as follows:

U=(1-d)¥o W, =[¥aV = 1) VodV= (=D (2)

where D is the global damage index, W=f;, ¥odV is the
total potential energy of the structure if it were undam-
aged and W, is the total potential energy corresponding
to the actual damaged state. Solving equation (32) for
D, the following final relation is obtained:

Wy _Jy TodV-[, (1-d)¥edV._ [, d ¥odV
wo™ T, YodV [, YodV

D=1~ (33)
If a damage index for a subvolume of the structure is
needed (such as a floor, some columns, etc) the integra-
tion will be done only over that specific subvolume.

In a finite element scheme, in the case of a structure
discretized with layered beams, the damage index of a
beam point D, (considering the beam as an unidimen-
sional finite element) is given by a similar expression ob-
tained by integrating (10) over the cross-section of the
beam, with ¥o = 1e:0° and & = §:¢

&dq 0

Dy=1- =2, 0=/S:adA=/(1—d)S:a A (34)

&o A A
where £ and & are the generalized strains and stresses in
that beam point, respectively. The global damage index
will take the following form:

>.a9: [y BO:69ds
 T.60: [ B9:6%ds

In this manner a damage index similar to that mentioned
by DiPasquale and Cakmak (1989) was obtained.

D= (35)

4 NUMERICAL EXAMPLES

The simulation of the evolution of the damage process
in a reinforced concrete plane frame (figure 5) subjected
to dynamic loading has been performed.

G N R |
—A 3m S 3Im A—
Fig.5 Geometry of the studied frame.
The frame is 9 meters high and 6 meters wide and has
three levels. The columns have a 30cm X 30cm cross-

section of reinforced concrete with a 4.35% steel ratio.
The horizontal beams are 40 cm thick and 30 cm wide



with a steel ratio of 5.3%. The structure was discretized
in 45 quadratic three-noded beam finite elements hav-
ing two Gauss points each. Thus, the resulted dynamic
model had 87 nodes with three degrees of freedom per
node. Each element is one meter long and has the cross-
section divided in 20 layers of equal thickness. The 2nd
and 19th layer are made of steel and the rest of them
of concrete. The steel ratio was controlled by modifing
the width of the steel layers. The state of the material
is checked at the interface between layers and afterwards
interpolated linearly across the layer. This gives 40 check
points per cross-section in each Gauss point.

The materials have the following properties: (a) steel
- E =2.1.108daN/cm?, ¢° = 4,200 daN/cm?, » = 0.25,
p = 8g/cm?; (b) concrete - £ = 2.0-10°daN/cm?, o° =
300daN/cm?, v = 0.17, p = 2.5g/cm®.

The equations of motion governing the dynamic be-
haviour of the structure have been solved using the New-
mark step by step algorithm for § = 0.25 and 4 = 0.5
(Barbat and Canet, 1989). The initial stiffness method
was chosen as nonlinear solution scheme due to the nega-
tive definition of the tangent stiffness matrix when soft-
ening effects occur. The time step used was a thirtieth
of the fundamental period of the structure. As the inte-
gration of the constitutive law can be done analytically,
an explicit formula [equation (20)] was used for the lo-
cal damage index thus reducing remarkably the solution
cost.
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Fig.6 Synthetic accelerogram.

The structure was calculated in two load cases: (a)
subjected to a synthetic earthquake accelerogram (figure
6) having a predominant frequency was 4 Hz and a maxi-
mum amplitude of 0.175 g and (b) subjected to the same
accelerogram with amplitudes multiplied by two. This
allows the simulation of the structural behaviour firstly
in a less damaged state (figures 8,9,11a) and finally in a
generally collapsed state (figures 7,10,11b).

J/J/J

Fig.7 Deformed configuration at collapse.

Figures 9 and 10 show the distribution of the sectional
damage as given by formula (34). The damage is located
at the joints of the columns with the floors, what is pre-
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cisely the expected damage localization for this type of
structure and load. As the structure is to fail mainly
by destruction of the columns at their joint with the
base floor, the mentioned diagrams confirm this prog-
nosed behaviour too. Comparing these diagrams with
the global damage given in figures 11(a) and 11(b) (the
continuous line), it may be seen that it takes values only
slightly smaller than the maximum sectional damage at
the bases of the columns. This fact ratifies the choice of
the global damage index as the ratio between the poten-
tial energy which the structure cannot undertake in the
damaged state and the potential energy that the struc-
ture should undertake if it were undamaged [equation
(33)]. The interrupted lines in figure 11 represent the
evolution of the floor damages. The first floor damage
is practically equal to the global damage of the struc-
ture as this floor is the most affected, while the second
and third floors follow in decreasing order as the damage
reduces with height.
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Fig.8 Third floor horizontal displacement evolution.
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Fig.9 Distribution of sectional damage Dy, case (a).
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Fig.10 Distribution of sectional damage Dj, case (b).



case (a)

0.5

------ LAd AL LA RAAMLAM ALARAAR) NOAMAAMAM] MAAALAAM) MAAAMAMM LA

1

<
<
3
=" 'J F—
ve Hl
I= I
e° [
i8] )
is T
e~ |‘r
&=
: -/
o
5 3
Rl e e e el
0 2 4 P T T
case (b)
- LARAR AN RSN R RN ERE R NERARRRRRYY LRRRRNREAS AR RREREREYSERRARRRRAARSNS
s "
- 4
Ae 4[ 1.
33 ==L
a° {--"'
V w
g i
H =
o —1="
gz -
Zn ! ]
ae =+
o )
P f
3 f, i
)} W
....... 1 FPTTTIT PO PP PITVTIYOTI FRVTVTUTTI FOTTIVITT] FOTIVITOTI TP
0. 1. 2 3. ‘. s 6 . 3
Time. e (s)
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5 CONCLUSIONS

In this paper a damage constitutive model was used, due
to its good performances and low solution cost (caused
mainly by its property of being analytically integrable),
to describe the nonlinear behaviour of reinforced con-
crete structures under dynamic load. This model was
incorporated in a finite element scheme which uses Tim-
oshenko beam elements discretized in layers of concrete
and steel in order to approximate the nonlinear behav-
iour of the beam cross-section. A global damage index
was rigorously deduced from the local damage index sup-
plied by the constitutive model. A reinforced concrete
building structure subjected to syntetic accelograms was
solved and satisfactory results were obtained.
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