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Testing of full scale shear wall structures under seismic load

A.Igarashi, E Seible & G.A. Hegemier
University of California, San Diego, Calif., USA

ABSTRACT: A full-scale testing procedure with an on-line computer controlled multi-actuator system was developed
and implemented for the testing of stiff shear wall type structures. The test method was implemented and verified
on 3-story full scale reinforced masonry shear walls and is currently enhanced to test a 5-story full scale reinforced
masonry research building under simulated seismic loads at the university of California, San Diego. The paper
discusses characteristics improvements for the outlined test procedure.

1 INTRODUCTION

A large number of new design models and complex
nonlinear analysis codes have been developed in the
academic research environment over the past years to
predict the realistic response of structures under
earthquake loads at various limit states such as yield,
maximum capacity and ultimate collapse. Due to the
limited availability of field data, the quality and
usefulness of these models depends to a large extent on
their verification and calibration through laboratory
experiments. These laboratory tests need to be
performed on a large or full scale in order to capture
the correct development of local and global failure
modes. Thus, experimental techniques are needed
which allow realistic seismic load input to full-scale
structural systems. This realistic seismic load input
should consist of recorded or synthetic ground
acceleration time histories, simulate the mass
proportional nature of inertia type loads and reflect the
nonlinear dynamic characteristics of the structure in
terms of stiffness degradation and higher mode effects.
Since shake table tests are limited in scope by payload
size and weight, reaction wall tests with on-line
computer controlled multiple actuator systems have
been developed which apply seismic load input through
a pseudo-dynamic sequentially quasi-static scheme
utilizing predicted structural displacements from
analytical models and time integration schemes of
various compiexity.

Problems with pseudo-dynamic full-scale tests of
stiff mult-degree-of-freedom structures to date
consisted of (1)spurious higher mode effects leading to
error growth and loading system instabilities, (2)stiff
coupling between actuators leading to convergence
problems, and (3)unrealistic simulation of mass
proportional loads through concentrated point loads or
loading system constraining effects. In an effort to
adopt a pseudo-dynamic test methodology to the full-
scale testing of stiff structures such as a reinforced
concrete masonry S-story coupled shear wall research
building shown in Figure 1, research developments
focused on mass proportional loading systems with

controlled soft coupling, controlled -experimental
displacement error growth, and experimental
procedures which do not require artificial numerical
damping in order to suppress spurious higher mode
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Figure 1. 5-story building test setup.
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effects. The evolving test methodology, termed GSD
(Generated Sequential Displacement procedure) is
discussed in the following, together with
implementation and verification on three-story full
scale shear wall specimens and extensions to enhance
the convergence characteristics for the upcoming 5-
story full scale building test.

2 TEST METHODOLOGY

The GSD procedure is based on the pseudo dynamic
testing principle (Mahin et al. 1989) where parallel
analytical and experimental models are used
interactively to trace the nonlinear response of a
structure to a seismic load input. While structural
deterioration and stiffness degradation are measured as
restoring forces on the test floor, the seismic
deformations for the next time step are determined in
the analytical model and subsequently applied to the
test specimen. Therefore, it is essential for a successful
pseudo dynamic test to accurately impose and monitor
structural displacements. Relevant hardware and
software requirements are discussed in the following.

The hardware components of the loading system
consist of the servo controlled actuators, load
distribution beams connected to the actuators and
elastomeric bearing pads which transmit the load to the
test specimen. As an example, the test setup, geometry
and dimensions of a three-story shear wall used in the
first series of GSD implementation experiments is
shown schematically in Figure 2. In this setup, the
loads were transmitted to the structure at each floor
slab through load distribution beams and two
elastomeric bearing pads.
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Figure 2. 3-story wall test setup and dimensions.

2.1 Elastomeric pads

The idea behind the use of elastomeric pads is that they
act as (a) equal load distributors, and (b) soft springs
between actuators and the specimen (structure). The
first feature provides a mass-proportional loading to the
specimen, and limited unconstrained structural rotations
and expansions of the floor system, thus allowing
structural deterioration without compromising the mass
proportional loading. The second feature, which is
illustrated in Figure 3, on a 2-DOF system, improves
the displacement control of the structure at small
displacement levels through displacement amplification,
and also protects the structure from actuator
instabilities during shake down testing. The mechanical
displacement amplification from this soft spring effect
of the elastomeric pads is discussed in the next section.
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Figure 3. Linear 2-DOF model.

2.2 Displacement amplification

In the following, symbols with hat () refer to "actually
measured” or “experimental" values, while symbols
without hat represent values which are "computed" or
"idealized". Consider a structure with n degrees of
freedom, and the actuator displacements as an n-
dimensional vector x, and structural displacements as
an n-dimensional vector x . Let us assume that the
actuators cannot be controlled precisely, resulting in an
actuator displacement error £ _-x, with an actuator
displacement error bound & of the form

Hﬁ‘—xan <8 (1)

where x, is the calculated actuator displacement
vector or command signals, and || represents the
norm of a vector. The value of the actuator
displacement error bound is dependent on the servo
controlled actuator system and cannot be zero. If the
actuators are directly connected to the specimen
without elastomeric pads, the (experimental) structural
displacement vector & will be such that

lﬁ-xl <39 (2)
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This implies that the error bound for the structural
displacement is also & , i.e. the precision of the
structural displacements is equal to the precision of the
actuator displacements.

Now, consider the case in which the specimen and
the actuators are connected through elastomeric pads.
This situation is described by the model shown in
Figure 3. The actuator displacement vector and the
structural displacement vector are related by

%, = Q% 3

where Q is an nxn "displacement amplification
matrix", which can be expressed by

1
=I+—K
Q K

P

“@

where K, is the elastomeric pad stiffness, K is the
stiffness atrix of the structure. Since

2-x = Q'®,-x,) )

the structural displacement error can be bounded as
follows:

Ix-xl < Q'L 1%, %}
<[Q-8

where |'], denotes the two-norm of a matrix (Gill et
al. 1991). Tf the stiffness matrix K is positive definite,
the matrix Q™! is also positive definite, and in this
case, the two-norm of the matrix Q! is simply the

©
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where A, is the eigenvalue of the stiffness
matrix I{ for the ith mode, and @ is the matrix

consisting of eigenvectors ¢, such that Ke,=A,@
and JeJ=1 . Note that these eigenvectors coincide
with the dynamic mode shapes if the lumped mass is
equally distributed to all the DOFs. Therefore,

IR-x] < ®)

1+-L
yJ

This result indicates that by using a small elastomeric
pad stiffness K , the structural displacement error
vector &-x caf be made smaller than the actuator
precision.

It can also be shown that the elastomeric pads lessen
the restoring force error resulting from the inaccurate
actuator displacement, and reduce the coupling between
structural DOFs, thus almost eliminating spurious
higher order interaction effects during initial load
stages at which the structure is undamaged and stiff.

There is a danger that the actuators reach their
stroke limit with this displacement amplification.
However, with the small elastomeric pad thickness of
1/2" used for the tests shown in Figure 2, higher
amplification is obtained at low load levels when
displacements are very small, while the amplification
effect decreases with increasing loads due to
deformation constraint in the elastomeric pads at strain
levels exceeding 100%.

largest eigenvalue of Q! , i.e.
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Figure 4. Test system diagram (per floor level).
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highly nonlinear test structure, it is difficult to obtain
the actuator displacement which results in the target
structural  displacement specified by the pseudo-
dynamic algorithm. An iterative procedure to search for
the a] iate actuator displacement vector needs to
be implemented. In order to allow such 2 procedure,
the testing system is configured as shown in Figure 4.

The inner control loop algorithm used in the three-
story wall test can be described as follows: After the
structural displacement measurements are compared in
2 software conwol loop with calculated target
displacernent levels, the structural displacement
increments 1o be imposed is obtained. This increment
is then appropriately scaled (to improve convergence
and test speed) and used as the next actuator
displacement increment.

This inner loop algorithm can be expressed by either

PRIEE SR RS L Wy o b B ®
or
& 2 xf’W(x.,,.,‘iw)- k=0,1,... (10)

with k denoting the inner loop iteration step and v the
displacement increment scale factor. Both algorithms
were tested, and it was found that the algorithm (10)
provided faster convergence and less structural
displacement error than (9), s(gu:c the relation berween
the command sj ) and the actuator

(x
displacement ( & ) is pcé'ssibly off-bias and not
completely linear.

2.4 Software: outer control loop

chgrql time integration schemes, such as Newmark
explicit, modified Newmark explicit, and the Hilber’s

glpha method with initial stiffness iteration were
implemented in the outer control loop. Also, a restoring
force correction scheme (Nakashima & Kato 1987) was
added to the outer loop. At time step i, in the outer
loop calculation of the next target displacement
xw(ilrl) , a "corrected" restoring force

) = 1) + Ko (X g ~2D) 1)

is used instead of the measured restoring force #(7) .
In eqnl1), K is the inital structural stiffness
measured experimentally at the beginning of the test
segments. The application of this outer loop restoring
force correcton scheme in conjunction with the
implicit Hilber’s alpha method was reported by (Shing
et al. 1991). The proposed GSD for the first U.S. 5-
story full scale building test will implement a similar
scheme as a modification to the inner control loop
(Seible er al. 1991).

3 RESULTS OF THREE-STORY SHEAR WALL
TESTS

Some results from the three-story full-scale masonry
wall tests with the methodology explained above are
presented in the following. For comparison of the
effect of the different time integration schemes, tests
are performed using the stiff pre-yield state of one of
the wall specimens. The input acceleration used was a
sequence of time windows from a record of Imperial
Valley (1979) earthquake. Obtained displacement
response time-histories for the three tests are depicted
in Fi 5. As can be seen, Test 19, the modified
Newmark explicit (MNE) scheme (Figure 5a) resulted
in a first mode response, since all higher mode effects
were numerically damped out. Some higher mode
effects were captured with Hilber’s alpha (HA) method
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Figure 5. Structural displacement and displacement error histories for 3-story wall tests.
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(Test 20), with 5% damping per mode. This higher
mode response is visible in' Figure 5b in the
displacement time-history and in the increased restoring
forces. Finally, the Newmark explicit (NE} scheme,
without any numerical damping, featured the largest
second mode contributions, as can be seen in Figure
5c. The displacement error can be tightly controlled by
specified error tolerances (note the three different levels
in Figure 5¢), where the error tolerance was adjusted in
three steps.

The above discussed modifications to conventional
on-line testing techniques have allowed the testing of
stiff masonry wall systems with GSD, using reliable
integration schemes such as NE without introducing
artificial numerical damping. Pseudo-dynamic test rates
were one to four thousand times the real seismic event,
resulting in test durations of typically less than one
hour per one second of earthquake time-history. Further
development to improve on the test speed are discussed
in the following.

4 CONVERGENCE ANALYSIS

It can be shown that the convergence of the structural
displacement to the target displacement is obtained
when the inner control loop algorithm is given by
expression (9) or (10). For simplicity of the analysis, it
is assumed that the system is linear { K , X}), and that

2 = 1® (12)

for all iteration steps k. This implies that the actuators
perfectly follow the displacement command signals.
Then the algorithm (9) or (10) result in the following
equation:

(k+1) ®

X = xg tY (Ko ~x®), k=01 (13)

v>1,
X is t&)e structural displacement vector to be
achigved, x and x® are the actuator and structural
displacement vector at iteration step k, respectively.

Assume a linear system as above, and substituting
(3) and (4) in (13), a difference equation for the
structural displacement is obtained as

D = (I-vQHxP +vQ'x .,
k=0,1,...

where v is a scalar multiplier such that

(14)

along with the initial condition, x@ .

If the target structural displacement vector x is
constant during the iteration, this difference equgt'fgn is
solved in the following manner. The equation is
rearranged to the form

Xarger XD = (-VQ (K gy x%) 15
Hence, if
u® = x,-x®, k=01, 16

is defined, it is easy to show that the solution of eqn.
(14) is given by

u® = @-vQHu®  k=0,1,.. (17)
Since the marrix § has the same eigenvectors as the
stiffness matrix X, and the corresponding eigenvalues
are 1+).£ij ( A, = the eigenvalue of K ), the
solution can be decomposed intc modes using the
eigenvectors of the stffness mawix, as

wl® = pw®, k=01, (18)
where w,(k) is the ith mode component in the vector
u® | and
v
=1- i=1
By .‘ » 1,2,..0 (19)
1+—

Therefore, if |p L<1 (preferably Osgp <1 ), all the
components of u‘() converge to zero as k-« . The
numbers u, (i=1,2,..,n) correspond to the rate of
convergence of the structural displacement to the target
displacement in the ith mode. As can be seen in the
above expression, @, is larger for a higher mode (with
larger A, ), thus the convergence is slower.

As an example, Figure 6 illustrates the convergence
behavior of the 2-DOF model shown in Figure 3.
Several simulated smuctural displacement paths are
shown, starting from different initial structural
displacements. Only the first seven iterated points are
shown in the figure. In the two degrees of freedom
displacement domain shown in Figure 6, convergence
along a positive slope corresponds to dominant first
mode response while convergence along a negative
slope indicates dominance of second mode
contribution. In Figure 6, it can be seen that the second
mode (the highest mode in this case) becomes
dominant in the displacement error vector near the
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Figure 6. Convergence behavior of 2-DOF model.
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target displacement point Also, oycrshooting of
indgi:'idual pD()l'*'s can be observed which slows down
the convergence behavior.

5 FUTURE IMPROVEMENT

Since the higher mode converges slower than-other
modes, as shown in the previous section, the residual
structural displacement error at the end of the inner
loop iteration will contain predominant highest mode

nts. This may induce unrealistically large
highest mode response, and it also significantly slows
down the speed of convergence.

Hence, one of i vements considered to the inner
control loop algorithm is to compensate the slow
convergence of higher modes. In order to accomplish
this, the inner control loop algorithm takes on the form

&2 x® N(% e ~2%) 20)

where N is an axn scaling matrix. By choosing the
value of N , the convergence properties of the
algorithm can be controlled. The algorithm used in the
ﬂxr;c—swry wall tests can be treated as a special case
where

N =vl 1)
In the above 2-DOF linear system example, if the
matrix Q is known through measurements, the choice

N =8Q 22)

where ¥ is a reduction factor, gives the structural
displacement paths shown in Figure 7. Note that all the
modes have the same convergence rate in this case, and
no overshooting is encountered.

These latest improvements to the inner loop
algorithm of the GSD procedure are currently

A
z,
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B v

Figure 7. Convergence of 2-DOF model with
improved algorithm.

implemented and tested in preparation for the 5-story
full scale masonry research building test. Due to the
stiff nature of the proposed 5-story research building,
explicit integration schemes would require severe
restrictions on the time step to maintain numerical
stability, thus, implicit integration schemes with the
discussed error correction will be implemented (Seible

et al. 1991).

6 CONCLUSIONS

It can be shown that the extensions to the pseudo
dynamic testing procedure implemented in GSD result
(1) in stable test procedures without artificial damping,
(2) in full participation of higher mode effects, (3) in
more realistic mass proportional loadings, and (4) in
significantly improved overall pseudo-dynamic test
speed. Results from the full-scale tests of three-story
shear wall structures showed that the developed test
method can be successfully applied even in the initial
or stiff undamaged structural state. The developed

ure will now be applied to the first U.S. five-
story full-scale building test under simulated seismic
loads.
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