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ABSTRACT: This paper looks into the application of a number of system identification techniques to
problems of earthquake engineering. A number of recursive techniques for structural system identification
have been developed over the past few years. Many of these techniques have been successful at identifying
properties of linearized and time-invariant equivalent structural systems. Most of these techniques were
verified using mathematical models simulated on the computer.

In this paper, a number of structural identification algorithms are reviewed and applied to the identification of
structural systems subjected to earthquake excitations. The algorithms are applied to experimental data. The
data pertains to the acceleration records from two building models subjected to various loading conditions.
The performance of the various identification algorithms is critically assessed and guidelines are obtained
regarding their suitability to various engineering applications.

1 Introduction

This paper presents the results from implementing a
number of recursive system identification algorithms
to experimental data. Its aim is to shed further
light on validating system identification techniques. as
well as on implementing techniques that are suitable
for monitoring the variation with time of models of
structural systems.

Two experiments were performed using scale
models of steel and concrete buildings. The data set
from each of the experiments consisted of acceleration
records measured at various floor levels. Each of
these records was analysed using a number of different
system identification techniques.

The two system identification techniques which
are reported in this study consisted of the recursive
least squares and the recursive instrumental variable
methods. A variant on the recursive least squares, rec-
ommended in the literature by various investigators,
was also implemented. It provides for an exponential
phasing out of old data. Furthermore, a variant on
the recursive instrumental variable technique which
resulted in an improved instrumental variable series
was also implemented. A comparative study of the
performance and the accuracy of these techniques,
as well as other non-recursive techniques, was also
carried out.
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2 Mathematical Models

The class of structures that fall within the scope of
the present investigation can he adequately modeled
by the following N -dimensional svstem of equations
which describes the motion of the structure.

Mi+ Ca+ Ku+glu. i) =1f(1) +w(t). (1)

Here, M denotes the inertia matrix associated
with the structure. C denotes the corresponding
viscous damping matrix and K the stiffness matrix.
Furthermore, the vector f(t) denotes the externally
applied forces. and glu.u] is a vector whose
components are nonlinear functions of the structural
displacement u and its first derivative 0. In the
above equation. the term w(t) represents errors due
to modeling approximations. Obviously. it can also
be used to model an additive noise to the excitation
process f(t) in which case, the noise may be attributed
to unmeasured environmental factors. The most
useful form for this noise process has proven to be
a zero-mean stationary Gaussian white noise.

For the purpose of structural identification, mea-
surement devices are placed at certain locations
throughout the structure. Their number is usually
less than the number of degrees of freedom of the
structure. This is due to both the expense associated
with additional measurements, as well as to the
fact that theoretically, each measured record contains
enough information to permit the identification of all
the unknown parameters. Furthermore. measurement
noise is usually associated with the measurement



process, leading to the following observation equation
which relates the observation vector at the i*/
observation time interval to the response vector at
that instant.

y: = Hi; + e (2)

In the above equation, H is a matrix which reflects
the location of the measurement devices in relation to
the structural nodes, and the associated amplification
or attenuation factors, and e; is a vector denoting the
measurement noise and is usually assumed to be a
zero-mean Gaussian white noise.

Alternatively. the identification problem can be cast
completely in terms of the observed input and output.
without any reference to the underlying mechanics or
the associated differential equation. This approach
provides an algorithm which permits forecasts of the
response of the structure that are compatible, in some
sense, with measured past input and output data. A
general class of models referred to as the prediction
error models is obtained using the following equation
(Goodwin and Payne, 1977)

yi = Vi(Vi-1s-- s Yimkofino oo ficy) + €0 (3)

Obviously, the more complicated the form of the
functional });, the more sophisticated the model is.
but also the more specialized and less robust it is. In
the important case of a linear functional relationship.
equation (3) can be conveniently rewritten as

vi = 67 x + e (4)

where 8; is a matrix of the coefficients in the linear
expansion, and

Xi = [Yic1, oo Yiek T fing ] (3)

Since equations (1) and (3) are mathematical expres-
sions of the same physical problem. an equivalence,
in some sense, should be anticipated between them.
Depending on the dimension of the observation space,
this equivalence can take one of many forms. Also,
the extent of the desired equivalence is problem
dependent and is usually limited to the equivalence
of the predicted output of a linearized version of
these equations. Such an equivalence can be achieved
by matching the spectral density of the response
of a linearized version of equation (1), with that
of an appropriate linear difference equation model.
Thus the difference equation associated with a scalar
observable can be written as

2N 2N
D kliok + 3 bkfick = 0. (6)
k=0 k=0

Equating the transfer function associated with
equations (6) and (1) after its linearization, results in

the following expressions for the physical parameters
in terms of the regression coefficients.

VA2 + & é
W = N €j= 5 2 ( )
! At ‘/,\J+5J

where At denotes the sampling rate. and

=1

1 A
A = Argls) 6 = _51111:,12 (8)

In the above equation. wj and & denote the

modal frequency and damping ratio of the jth
mode. respectively. Also. z; denotes the jth pole.
in the upper half of the complex plane. of the
transfer function of the model in equation (6). The
equivalence given by the above equations is based
on the assumption that modal superposition applies
to the dynamical system under consideration. This
assumption may lead to spurious results when trying
to recover the physical parameters from the regression
coefficients. In particular. it is noted that for z; real.
a value of 100% is obtained for the corresponding
critical damping ratio §;.

3 The Identification Algorithms

3.1 Recursive Least Squares

The recursive least squares method consists of
updating a least squares fit to the available data,
as more data is made available. It can be shown
that the estimates obtained using a least squares
algorithm tend to be biased unless the prediction
errors are uncorrelated, which is seldom the case. The
bias is generally associated with the propagation of
the initial error in the estimates. The effect of this
error can be substantially reduced by implementing a
process whereby less weight is given to older data. An
exponential weighting function has been successfully
implemented to this end in a number of investigations.
This technique is mathematically based on minimizing
the following loss function (Goodwin and Payne,
1977),

SK(8k) = aSe-1(0x) + (o —xT6)" . (9)

where the second term represents the error associated
with the current observation, and 0 < a < 1. It can
be shown that the cost function given by the above
equation is equivalent to the cost function given by
the equation

k
S(0) = 3 (y,- _x,Te) af-in (10)

=1
which better explains the role of the parameter a. The
prediction equation and the gain matrix K are given
by

B = 0 + Kig yk+1—xZ+lék] ., (11)
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and
Pixpq1

K/C+1 —_—
T *
o+ X PrXepr

(12)
respectively. Furthermore, the recursion for matrix P
appearing in the above equation is given by

xk+1x{+1

o et (P . (13
“a+x{+1PA.xk+1 ke (13)

1

Pk+1 = g I-
In all the subsequent implementation of this al-
gorithm, a gzero initial guess for the regressjon
coefficients, and a diagonal matrix with large elements
(1000) for the matrix P were used. Values of a of
0.99 have been recommended in the literature. In the
course of the present research, values of o ranging
from 0.7 to 0.99 were implemented.

3.2 Recursive Instrumental Variable

The least squares criterion for system identification
can be viewed as a minimization of the following norm
of the prediction error

lle|| = /e%z. (14)

A useful generalization of this concept is to view the
above integral as a weighted residual. It is then
apparent that a more flexible criterion for computing
the coefficients of the hypothesized model is obtained
by using the following norm of the error

llell = <e.f>, (13)

where < , > denotes a suitable inner products
and e and f denote either functions or discrete
series. The Instrumental variable method is
obtained as a special case of the above technique.
Specifically, the weighting series is so chosen as
to be minimally correlated with the error, while
having a large correlation with the output of the
system, uncorrupted by the measurement errors. It
can be shown that this choice of template function
has a number of desirable effects on the statistical
properties of the estimates.
The series given by the vector

Vi = [ foeret oo+ fomr fret o0 Si ) (16)

has been suggested as an instrumental variable
series (Young, 1984). This series consists of two
observation blocks of the input separated by alagof L
observations. Assuming the input to be uncorrelated
with the observation noise, the above series obviously
satisfies one of the requirements for an instrumental
variable. Furthermore, the lag parameter L can
be so adjusted as to achieve maximum correlation
with the output series corresponding to the system
response. In this investigation, the parameter L was
chosen in such a way that the two observation blocks

were adjacent and non-overlapping. The resulting
recursion algorithm is quite similar to the one derived
for the recursive least squares. and is given by the
following eqguations

Oer1 = 0 + Kisr | Yo —x{+19;.-]; NS

where
PiXps

K[;_Ll —————
14 XZ+1Pka+1

(18]
and

T
Xk+1Xfgq

P, = I-Pp—
* [ T+ X} Pevig

} Pi. (19)
It is important to note that although the recursive
least squares can be shown to vield identical results
to the non-recursive least-squares. the same is not true
for the recursive instrumental variable algorithm.

A more general implementation of the Instrumental
variable technique can be achieved by an instrumental
variable series having the following form.

VI = [he oo hpmt fyo fem ] (20)

where h; is a series so chosen as to maximize the
correlation with the output of the svstem while
minimizing the correlation with the measurement
noise. One way to achieve this goal is to chose {&,}
as the output of an auxiliary system which is a good
approximation to the real svstem. In this case. h; is
given by the following recursive equation

hi = ﬁz.-vk- (21)

where (8, denotes the parameters of the auxiliary
svstem. In this investigation. they are obtained
from the estimated system parameters through the
following algorithm (Young, 1984),

Brgr = (1=7)8x +78ks1 . (22)

Note that for v equal to 1, the auxiliary system
coincides with the real. noise-corrupted. system.
Values of 7 between 0.03 and 0.1 have been suggested
in the literature. In addition to this range of values.
values between 0.1 and 1 were also implemented
in this study in order to provide a comprehensive
assessment of the sensitivity of the algorithm, in the
context of earthquake engineering, to variations in 7.

4 Numerical Results

Two sets of experiments provided acceleration time
histories for the verification of the above parameter
estimation algorithms. The experiments involved a
three story steel building model and a five story
reinforced concrete model. In both experiments,
the model was subjected in turn to a white noise
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base motion, and to a motion representing the El-
Centro earthquake. Also, in both experiments,
‘accelerometers measured the structural response at
floor levels. Digital band-pass filters conditioned
the acceleration time histories after digital data
acquisition. An extensive parametric study was then
performed using the collected database. A detailed
presentation of the associated results can be found
elsewhere (Ghanem et.al, 1991). In this paper,
only some of the results pertaining to the five story
building model are presented. Typical results for
the five-story building model associated with the
unmodified recursive least squares are shown in Figure
(1). This figure shows the time variation of one of the
coefficients of the linear prediction model associated
with observations at the fifth floor. The exponential
window algorithm was implemented on the above
data. The value of o corresponding to this figure is
equal to 0.99. Figure (2) shows corresponding values
of the coefficients of the prediction model. associated
with the same observations as the ones shown in
Figure (1). An important observation can be made
concerning the results associated with the exponential
window. Specifically, it is noted that the effect on the
first few observations is a desirable smoothing of the
estimates, which deteriorates for later observations.
A variant on the algorithm was implemented whereby
the exponential window was used only for a fraction
of the observations. In this case, one fourth of the
data at the beginning of each record was processed
through an exponential window with a value for
the parameter a equal to 0.99. The effect of this
procedure on the stability of the estimates was quite
significant as can be seen in Figure (3). The
recursive instrumental variable algorithms described
earlier were implemented in a fashion similar to
that described above for the recursive least squares
algorithms. The first algorithm involved an unfiltered
instrumental variable series. The coefficients of the
linear prediction model identified in this fashion
exhibited a pronounced transient behavior which was
indicative of a deficient instrumental variable series
which was incapable of identifying the parameters
of the model. Typical results pertaining to these
coefficients are displayed in Figure (4). Figure
(5) shows the results corresponding to the filtered
instrumental variable technique. This latter technique
does not seem fit for on-line identification, since it
requires pre-tuning the auxiliary filter to the given
data.

As discussed above, the coefficients in a linear pre-
diction model can be associated with the parameters
of an equivalent linear differential equation. These
parameters can be related to such modal quantities
as the natural frequencies and the damping ratios of
the structure. In this section, these equivalent modal
quantities are obtained which are associated with

the coefficients presented in the above. Figures (6)
and (7) show typical estimated natural frequency and
damping ratio obtained from the five-story building
model corresponding to measured data from the
fifth floor. and using the unmodified recursive least
squares algorithm. In general a monotonic trend is
observed even at the end of the estimation period.
suggesting that the estimates have not vet reached
their final values. This behavior may be attributed to
a strong bias associated with the estimates. In other
cases. large fluctuations were observed throughout the
estimation period. These fluctuations seem to be,
in most cases. between the values corresponding to
two or three different frequencies. This fact may be
attributed to the much smaller contribution to the
total motion coming from the fifth mode. It is also
observed that poor frequency estimates are associated
with poor damping ratio estimates. As to the effect of
the input motion on the estimates. it was noted that
the effect was minimal. and similar behavior of the
estimates was observed for both the El-Centro input
motion and the white noise input motion. Figures
(8) and (9) show the results corresponding to the
least squares estimation using an exponential window.
Except for few cases, these estimates are not well-
behaved, and are in general poorer than the results
without a the exponential window. The processing
of only an initial block of the data through the
exponential window had a substantial positive effect
on the results. As can be seen in Figures (10)
and (11). The fluctuations have disappeared from
all the estimates. The estimated modal quantities
using the instrumental variable technique ranged
between well behaved and widely fluctuating. The
method, in this form. cannot form the basis for
a reliable system identification technique. Typical
results are shown in Figures (12) and (13). By filtering
the instrumental variable series as indicated above,
substantial improvement can be achieved. Figures
(14) and (15) show the results corresponding to this
case. The well behaved results obtained with this
technique bely the difficulty of its implementation.
Specifically, only certain values of the parameter v
were found to yield converging estimates for a given
record. However, as can be observed, when such a
value was found, the estimates exhibited a pronounced
improvement over the previous implementation of the
instrumental variable algorithm.

5 Conclusions

The emphasis placed throughout this paper on time
domain techniques for system identification is justified
by the desire to monitor the evolution in time
of the identified parameters. This capability has
the potential of permitting the synthesis of more
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lable 1: Comparison of Identification Algorithms

Identification Required Numerical On-Line Initial Reliability
Techniques Expertise | Convergence | Potential Guess of Results
MLE Tigh med Tow Clote Tigh
Extended

Kalman high med low close high

RLS Jow high high any med

LS with

Exp Window | low high high any high

Rec IV med high high any med

Hec IV high Tow high any med

with Filter

meaningful damage assessment indices, as well as
enhancing the reliability of adaptive schemes that may
be used for on-line control of structural systems.

The issue of a suitable identification algorithm
is compounded with the issue of deciding on an
adequate mathematical model for the structure. This
issue comes into play when deriving an equivalence
between the parameters of the linear prediction model
and a set of physical parameters such as modal
quantities. Whereas a linear prediction model has a
definite interpretation as a linear relationship between
the input and output measurements, a differential
equation mode] based on modal superposition involves
further assumptions that are likely not to hold under
earthquake-type excitations. As a consequence of this,
although the linear prediction model can be used to
forecast the behavior of the structure with a well
understood optimization criterion, the same does not
hold for the differential equation model. Therefore.
depending on the context in which the identification
algorithm is being used, it may be more consistent to
use the linear prediction model.

Table (1) summarizes the recommendations from
this study while highlighting the issues that were
deemed important in assessing the worthiness of each
of the identification algorithms.
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Figure 1: Recursive Least Squares; o = 1; El-Centro Input;
Ninth Coefficient; Fifth Floor Measurement.
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Figure 2: Recursive Least Squares; o = 0.99; El-Centro In-
put; Ninth Coefficient; Fifth Floor Measurement.
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Figure 3: Recursive Least Squares; a = 0.99 Only for Initial
Block; El-Centro Input; Ninth Coefficient; Fifth Floor Mea-
surement.
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Figure 4: Recursive Instrumental Variable; El-Centro Input;
Fifth Floor Measurement.
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Figure 5: Filtered Recursive Instrumental Variable; v
0.13; White Noise Input; Fifth Floor Measurement.
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Figure 6: Recursive Least Squares; & = 1; Identified Natural
Frequency; El-Centro Input; Fifth Floor Measurement.
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Figure 7: Recursive Least Squares; o = 1; Identified Damp-
ing Ratio; El-Centro Input; Fifth Floor Measurement.
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Figure 8: Recursive Least Squares; o = 0.99; Identified Nat-
ural Frequency; El-Centro Input; Fifth Floor Measurement.
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Figure 9: Recursive Least Squares; o« = 0.99; Identified
Damping Ratio; El-Centro Input; Fifth Floor Measurement.
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Figure 10: Recursive Least Squares; a = 0.99 Only for Initial
Block; Identified Natural Frequency; El-Centro Input; Fifth
Floor Measurement.
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Figure 11: Recursive Least Squares; a = 0.99 Only for Initial
Block; Identified Damping Ratio; El-Centro Input; Fifth Floor

Measurement.
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Figure 12: Recursive Instrumental Variable; Identified Nat-

ural Frequency; El-Centro Input; Fifth Floor Measurement.
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Figure 13: Recursive Instrumental Variable; Identified

Damping Ratio; El-Centro Input; Fifth Floor Measurement.
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Figure 14: Filtered Recursive Instrumental Variable; ¥ =
0.13; Identified Natural Frequency; White Noise Input; Fifth
Floor Measurement.
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Figure 15: Filtered Recursive Instrumental Variable; v =
0.13; Identified Damping Ratio; White Noise Input; Fifth
Floor Measurement.
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