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Generalized optimal active control algorithm for nonlinear seismic structures

EY.Cheng & PTian
University of Missouri-Rolla, Mo., USA

ABSTRACT: This paper presents a generalized algorithm for optimal active closed-loop control

of nonlinear building structures.

Based on the idea that the unknown state variables at the

end-point of a time interval should also be minimized, a generalized performance index is

selected and the corresponding transversality conditions are derived,
independent optimal feedback gain matrix is achieved.

so that a time-
The state equation of motion is solved

in the real time domain by using numerical integration and the concept of unbalanced force

correction.

Numerical comparisons between the proposed algorithm and the instantaneous

algorithm are performed, which indicate that the proposed method is superior in that it is
stable while the conventional method is time-dependent.

1 INTRODUCTION

Optimal control can provide protection for
building structures from the damaging effects
of destructive seismic force or from human
discomfort over structural motion induced by
strong wind and other types of vibrations.
Optimal structural control can be achieved by
using passive or active control devices or
their combinations. Passive control devices
utilize the fact that an energy-dissipating
mechanism can be activated by the motion of
the structure itself. Active control devices
require external energy for their operation.
The devices used for active control include:
active tendons, active mass dampers, etc.

In recent years, several algorithms for
optimal active control of seismic structures
have been developed. Among them, instanta-
neous optimal active closed-loop control
algorithm has been studied by J.N. Yang et al
(1987), T.T. Soong et al (1987), and F.Y.
Cheng et al (1986, 1987, 1988). Application
of instantaneous algorithm to nonlinear
structures has also been made by J.N. Yang et
al (1988). Current studies by F.Y. Cheng
(1991) indicate that in the instantaneous
optimal closed-loop control algorithm is
time-dependent on the incremental time inter-
vals used in the response analysis. Using
different time intervals yields various
control forces and structural responses of a
given structure subjected to the same earth-
quake. Thus, control effectiveness cannot be
ensured for a structure subjected to differ-
ent earthquakes during its lifetime.

In this paper a generalized optimal active
closed-loop control algorithm for seismic
nonlinear structures is proposed. Based on
the idea that the unknown state variables at
the end-point of a time interval should also
be minimized, a generalized performance index
is selected and the corresponding transversa-
lity conditions are derived, so that a time-
independent optimal feedback gain matrix is
achieved. The state equation of motion is
solved in the real time domain by using
numerical integration and the concept of
unbalanced force correction.

2 FORMULATIONS
2.1 Motion equation for active tendon control

The motion equation for a one-dimensional N-
story nonlinear structure equipped with
active tendons at some floors, as shown in
Fig.1l, can be expressed as

[M] {X(E) ) +{Fp(t) } +{Fy(t)}}

=[y] {u(L)) +{8) X () (1)

where [M] is N X N mass matrix; {x(t)} of N
x 1 and {u(t)} of r x 1 are relative dis-
placement and control force vectors, respec-
tively, where r is the number of active
controllers; and (y) of N X r and {8} of N x
1 are location matrix for control force and
coefficient vector for the earthquake ground
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Figure 1. Building structure equipped
with active tendon

acceleration, X, (t); {Fp(t)} and {Fg(t)} of
N x 1 are damping and restoring force vec-
tors, respectively, which can be approximated
by the following expression
{Fp(t)}={Fp(t=-At)}+[C(t-At)]({*(t)}
-{x(t-At)})
{FR(t)y={FK(t-At) }+[K(t-At) ) ({x(t)} (2)
-{x(t-4t)})

where [C(t-At)] and [K(t-At)] of N x N are
damping and stiffness matrices at time t-At,
the coefficients of which are defined by

Fpji (t=-At)-Fpj (t-24At)
%3 (£-At) -x4 (t-24t) (3)
Fgji (t~-At) -Fgj (t-24At)
x5 (£-8t) -x; (t-24t)

cij(t_At)=

kij(t-At)=

Substitution of Eq.(2) into Eq.(l) yields

M){x (e} +[C(t-AE)N{x (L)« [K(C~- Ac)](x(t)}
={F(t-At)}+[y){u(t) )+(6)x (t)

where

{F(t-At)}=([C(t-At)Kx (t-At)}+[K(t=-At)Kx (t-At)}
-{Fp(t-At)}-{Fg(t-At)}
(5)

By defining the state-vector

{x(t)}
t
(z(e)1f x(t))} (6)

Egs. (1) and (2) can be combined as

{(:’c(c))}g{ (0l |__ (1] ((x(t)}}

(e ) |- KT - M1 (e U k(e )
(0 . { {0} }x
+[ e 8 (0 ()

it
(M] " {F}

in which [K] = [K(t-At)], [C] = (C(t-At)]) and
{F} = {F(t-At)}.
In compact form, Eq. (3) becomes

{z (t)) = [Al{z ()} + [BI{u (£)} +{Ch X (E) + (F}  (8)

2.2 Generalized performance index

Suppose that the performance index is to be
minimized in the time interval (ti-1, ty).
Since the values of the state vector at the
right end-point ti, {z(tj)}, are unknown,
which implies that the problem involved is a
free end-point boundary value problem, {z(t;_
)} should be minimized, i.e., a function of
{z(tj)} should be included in the expression
of the performance index. Therefore, a new
performance index J;, called generalized
performance index, is proposed as follows

Ji=g({z(t)})
1t
*Ef:m((z (£)3T1Q) (z ()}

+{u(t)})T[RI{u(£)})de 9
=g((z(t,)))+f:“ T(t)dt
" 11

where [Q) is a 2N x 2N positive semidefinite
matrix; (R] is an r x r positive definite
matrix; and g({z(tj)}) could be chosen in the
form of

g{z(t)})={z(c)}7(s) {z(t})) (10)

in which (S]) is a 2N x 2N positive semi~-
definite matrix.

2.3 Transversality conditions

Since the problem involved is a free end-
point boundary value problem, in order to
minimize the generalized performance index,
Ji, not only Euler Equations, but also the
transversality conditions should be met at
the end-point ti.

Suppose that the end conditions relating
the end-point variables are given by



i1
t1—1=to*2 Atk
k1
{z(ty ) }={zy,} (11)
i

t1=to*2 Atk
k=1

where At is the time increment.
Eg. (11l) can also be written in the
following form

i-1
a, (ty,-ty) —g; At
() =100 1=z (e, ) - (2,0 1210 (12)
Q, Iy
(ty-ty) =) At
k=1

By introducing multipliers (g} and {A)} and
forming the following augmented functions

G=g+{p}T{Q} (13)

F=E+(A(0)}T([A) {z(C) )+ (B} {u(t)}
+{C}R () +(F) - (2 () }) (14)
=E+ (A () )TLE(D) )

the transversality condition can be expressed
as

t
a0~ {(5rareyy} e 'F)dt(ci_l*{a{;fw ) }T(ls)
'd(z(t)}ti =0

i-1

Substitution of Egs.(13) and (1l4) into Egq.
(15) yields
(sl{z(ty)}-{A(ty) }={(0} (16)

2.4 Determination of feedback gain matrix

By applying Euler equation in Eq.(9), the

following characteristic equations can be
obtained
[Q) {2 (t) )+ [AJT(A (L) }+(A(t)}={(0} (17
[R) {u(c) )+ [BIT{A(C)}={0) (18)
Eq. (18) can be rewritten as
{u(t))=-(R](BIT(A (L)} (19)

For a closed-loop control system, the
relation between the state vector {z(t))} and
the control force vector can be given by

fute))=[6] {z(t)} (20)

where [G] is called feedback gain matrix.

By,combining Egs.{19), (20) and transversa-
lity condition Eq.(16) the expression of the
feedback gain matrix at each end-point t; is
obtained as follows

[G(t,)]=-[R]-*[B]T([S] (21)

It is noted that the feedback gain matrix
[G(t;)] is actually a constant matrix, it is
neither a function of time t; nor a function
of time increment At. Therefore, during the
computation process, At can be arbitrarily
changed within the range of precision.

It is also noted that the weighting matrix
{Q) makes no contribution to the feedback
gain matrix. Therefore, for simplicity, [Q]
can be chosen as [0]).

Furthermore, it can be seen that if [S) is
chosen to be the algebraic Ricatti matrix

(P), i.e., (8] = (P], the feedback 4gain
matrix can be written as
(Gl=-[R}*[B]*[P] (22)

which is the same as the gain matrix of the
Ricatti closed-loop control algorithm.
Therefore, the Ricatti closed-loop control
algorithm s obviously included in this
generalized algorithm.

2.5 Solution technique

By substituting Egs. (20) and (21) into Eq.(8)
and employing Wilson-6 method, the solution
of the state equation of motion can be de-
rived as

{z(t)}=([I)+[A,)[R]*[B]T(S8])*

(D(E-AT)} + (A K, (E) ) 23)

where

{D(c-At)}=[A]{z(t-AC)} + (A J({Fy(t-AtL)}
*{FS(E"ATJ)))*[AS] {u(t-4at)} (24)
+{Ag}Xg(E-AT)

in which matrices [A;] (i=1,2,...,6) are

functions of t~At.

3 NUMERICAL ILLUSTRATION
3.1 Structural models

A single DOF structural model is used to
illustrate the fundamental behavior of the
control algorithms. Structural properties of
the model are: floor wass M = 345.6 tons;
translational stiffness XK = 3.404 x 10°
kN/m; and linear viscous damping coefficient
¢ = 734.3 kN sec/m; the undamped frequency
and damping ratio are SHZ and 0.034, respec-
tively; the yielding deformation for each of
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Figure 3. Hysteresis loop for uncontrolled
structure

the columns is 1.0cm. N-S component of El-
Centro earthquake of May 18, 1940 is used as

ground acceleration input. The structure is
equipped with active tendon. Both instanta-
neous (IOAC) and generalized optimal active
control (GOAC) of nonlinear closed-loop
algorithms are employed in the study. 1In the
IOAC algorithm, the ratio between the ele-
ments of the diagonal [Q] matrix, 9 = qy,
and the element of [R) matrix, rjy, is chosen
to be 2 x 108; in the GOAC algorithm, the
ratio between the elemente of the diagonal
(S] matrix, sy = 8y, and the element of (R]
matrix, ry, is chosen to be 1 x 1086,

3.2 Comparison of response by IOAC with GOAC

Figures 2(a) and (b) show the influence of
time-increment At on the floor displacement
and control force of the structure subjected
to the earthquake excitation with magnitude
increased by a factor of 2.0. It can be 'seen
that for IOAC algorithm the influence of At
is remarkable. When two different time
increments of 0.0025 and 0.01 sec. are used,
the responses of displacements and control
forces associated with the two time incre-
ments are significantly different. However,
At does not influence the response for the
GOAC algorithm when the two different time
increments are employed. Apparently, IOAC is
time-dependent and sensitive to time incre-
ment while GOAC is independent of varying
time increments. In structural analysis, the
time increments of the selected earthquake
records could be different. Therefore, the
response and control force of the structure
should both be free from the variable at.

3.3 Active control effectiveness on nonlinear
structures

Fige.3(a) and (b) show the columng‘’ hystere-
sis loops of the uncontrolled structure sub-
jected to 1.0 and 3.0 times of the earthquake
acceleration, respectively; while Figs.4(a)
and (b) show those of the controlled struc-
ture. These figures indicate that the active
control effectiveness is very significant:
for the first case (1.0 Xg), the floor rela-
tive displacement is reduced from 1.19 cm to
0.59 cm; for the second case (3.0 ¥.), the
displacement is reduced from 3.27 cm to 2.16
cm.

3.4 Earthquake response of the actively

controlled structure

Fig.5 gives the relative floor displacements
of the uncontrolled and controlled structure
under 3.0 times of the earthquake accelera-
tion. By comparison it can be seen that
using active control devices the inelastic
response of structures can be significantly
reduced,
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Figs.6 (a) and (b) show the displacements
and control forces of the actively controlled
structure subjected to 1.0 and 3.0 times of
the earthquake acceleration, respectively.

4 CONCLUSIONS

This paper presents a generalized optimal
active control algorithm for nonlinear seis-
mic structures. By introducing a generalized
performance index and employing the transver-
sality conditions, a generalized feedback
gain matrix ie derived. Unlike the instanta-
neous algorithm, this generalized feedback
gain matrix is not dependent on incremental
time intervals. Therefore, if the general-
ized algorithm is employed, the control force
and structural response will be identical
when different time increments are used.
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Furthermore, during the computation process,
the time increment can be arbitrarily changed
within a range of precision not leading to
discontinuous results.

It is also found that this generalized
approach can match the algebraic Ricatti
matrix method if the weighting matrix ([S) is
properly selected. The numerical examples
show the effectiveness of the active control
on nonlinear structures. By using active
devices, the inelastic deformation of struc-
tures can be significantly reduced.
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