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Structural design based on the optimum seismic reliability

K.Asano & N.Tsuda

Kansai University, Japan

ABSTRACT: An analytical approach to structural design parameters is developed using the principle of optimum
seismic reliability. An earthquake-like stationary random excitation being assumed, probabilistic earthquake response
is estimated as a solution of a simple simultaneous algebraic equation. Based on this probabilistic earthquake response,
seismic structural reliability and its associated derivative with respect to design variables are evaluated, and the
optimum parameters are determined. The validity of this approach is demonstrated by examining the perspective
and contour lines of the seismic reliability regarded as a function of design parameters for elastic structural systems
with three- and five-degree-of-freedom. The application of this approach is also presented to determination of elasto-
plastic structural parameters with bilinear hysteretic characteristics.

1 INTRODUCTION

In general the anti-seismic safety of structural systems
has been examined on the basis of analysis of structural
behavior subjected to actually recorded strong earth-
quake motions. Structural systems have been checked to
ascertain whether the earthquake response of their ele-
ments is less than the safety threshold level correspond-
ing to these elements, but optimality has not hitherto
been investigated.

The design approach to structural elements developed
here is essentially different from previous approaches,
which place their emphases on either the minimization
of the base shear force or the uniform distribution of the
storey drift response. Since one objective of anti-seismic
safety design of structural systems lies essentially in of-
fering aseismic safety to the system, a structural design
should in turn preserve this objective.

This paper deals with an optimum design of structural
systems, i.e. the prediction of the optimum dynamic
parameters of the system by selecting probabilistic seis-
mic reliability as an objective function. For this objec-
tive, we adopt a stationary earthquake-like non-white
random process with a prescribed maximum amplitude,
predominant period and spectral shaping factor for the
earthquake acceleration functions. A stationary process
is used here rather than a non-stationary one, because
of its suitability for the parametric surveying method.

Even with a stationary random process, it has so
far been by no means easy to estimate the earthquake
response of structural systems with multi-degrees-of-
freedom (m.d.o.f.), these hitherto having for the real
parts of their transfer functions required calculation by

the tedious integral estimation method. Here, however,
instead of solving differential equation for non-stationary
random response, we derive the latter as a solution of a
simple first order algebraic simultaneous equation. The
analytical procedures developed here axe,

1. derivation of the probabilistic second order moment
response and its first and second order derivatives with
respect to design parameters as a solution of the alge-
braic simultaneous equation;

2. calculation of the first and second order derivatives
of the anti-seismic safety probability for the respective
stories;

3. determination of design parameters optimizing
probabilistic seismic reliability, that being defined as
the aggregate products of the safety probability of each
storey, derived using the Newton-Raphson method;
and

4. demonstration of the validity of the presented ap-
proach through a comparison of its results with those
based on another criterion, that of the uniform drift re-
sponse distribution of the system .

The possible application of the presented approach to
elasto-plastic structural systems is also discussed em-
ploying bilinear hysteretic systems, which can be re-
placed with the elastic ones based on the equivalent lin-
earization and the presented approch can be easily app-
plied to.

This approach is partly dependent upon such hypothe-
ses as the stationarity of earthquake-like random excita-
tion, the Poisson probability distribution function (p.d.f)
of the anti-seismic probabilities of the respective stories,
and the independence of the safety probability, all of
which remain to be pursued in the future.
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2 ANALYTICAL METHOD

2.1 MOMENT RESPONSE AND ITS DERIVATIVE
WITH RESPECT TO DESIGN PARAMETERS

A method was developed by which can be estimated the
probabilistic second order moment response of m.d.o.1.
systems subjected to non-stationary earthquake-like ran-
dom excitation by Asano (1985) . Here is briefly sum-
marized the method for the case of stationary response.
A fundamental equation of the motion of structural
systems subjected to the earthquake excitation f is

n
1, =ZaJiug+b,f (1)
1=1
in which n is the maximum number of state variables u;
necessary for specifying the motion of the system, j is
a variable number, a;; is specified by the stiffness and
viscous damping coefficient of the elastic system plus
the elastic-limit deformation, the plastic-branch slope
and the equivalent linearization coefficients of the elasto-
plastic bi-linear system, the predominant period wy and
the shaping factor hg of the earthquake excitation, while
b, is the coefficient associated with the excitation inten-
sity. Probabilistic non-stationary second order moment
response m;; = E(u;u;) is estimated by the differential
equations,
n
my; = Z(a;,mu + aﬂmu) (2)
=1

Mgy = (a? - 4h9w2m,m_1 - w;mn_l,,_l)/tlhgug (3)

inwhichi=1l~n,j=i~n-1 ,U} is the mean square
of the excitation, and mpy, appearing on the right hand
side of Eq.(2), has to be substituted using Eq.(3) for the
numerical calculation. For the stationary case,m;; = 0
and from Eq.(2) is obtained

n

> (aamu; + a;mi) =0 (4)
=1
Substitution of Eq.(3) into Eq.(4) leads to the follow-
ing simultaneous algebraic equation for M; = M5,

N
[A{M} = {B}o} = J):IA,JM, = Bio} (5
in which the elements of the coefficient matrix [A] are
expressed in terms of those of the matrix [a] , and the
elements of {B} are expressed in terms of wy and hy
By selecting the variables {X;}(k = 1 ~ g) that spec-
ify structural elements as design parameters, first order
partial derivatives (sensitivity coefficients) with respect
to these variables are derived from Eq.(5) as

) =-w oo o

2.2 DESIGN PARAMETERS BASED ON THE
OPTIMUM SEIMIC RELIABILITY

Here seismic reliability R(t) is selected as an objective
function in determination of the optimum parameters
for structural elements; provided that the p.d.f. of the
structural maximum response process is poissonian, it is
expressed approximately by

R(t) = exp(— i (1)) (7

p](t) =

t /My %2

uyuy exp | — J (8)
T Payu; 2

and where p; and 4; are respectively the probability and
the threshold level of safety for a given storey j.

The derivative of R(t) with respect to the variaple X)
gained from Eq.(8) is
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and the optimization of R(t) to X is tantamount to
solving the following algebraic simultaneous equation to
Xk

= 9p,(t)
HBy={S 2 py= o 11
{Jk} {jzl X, } (1) = {0} (11)

2.3 ITERATIVE METHOD OF EVALUATING
DESIGN PARAMETERS

The application of the Newton-Raphson method is ef-
fective in the solution of Eq.(11) suggested by Ozaki et
al. (1963). This equation is rewritten for the duramy
variable number k = 1,2,.-., u thus:

T, "Z PJ(‘)R(t)__O (k=1,2,---,u) (12)

J=1

The increment amount of the design variable {A Xy}
with the i-step approximate solution {X)} is given by
solving the simultaneous equation,

2
X
where [0J/8X] and {J} are calculated using the i-step
solution of {X}. Given that Muju; = m11 and My, =

{AX} = (]} (13)
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maa , the derivatives of J with respect to X are gained
by
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and {8°m/0Xx0X} is estimated from Eq.(5) as

8%m - 324
{axkaxk,} = - ({axkaxw] {m)

* [aﬁéﬂ {é%rnf} * {5%] {;_x"f}) (16)

3 NUMERICAL EXAMPLES
3.1 ELASTIC STRUCTURAL SYSTEMS

To examine the validity of the presented analytical ap-
proach, the optimum distribution of dynamical elastic
structural properties is discussed.

Let the given elastic structural system have three-
degree-of-freedom, its mass distribution {m} be uniform
{m} ( ™: a standardized amount of mass) and its stiff-
ness distribution be given as

=2 (22))

where % is a standardized stiffness ,A and v are the indi-
cies governing the distribution of {k;} , and the damp-
ing ratio is assumed to be proportional to the stiffness,
assuming five percent of the critical damping as the fun-
damental mode of vibration. Further, let the level of
the envelope function of oy , the shaping factor of the
power spectra hy and the predominant angular frequency
wg of the excitation be respectively 50 ~ 100(gal) , 0.3
~ 0.5 and 3.0 ~ 20.0(rad/sec) , while the standardized
mass and stiffness are determined so that the fundamen-
tal period of structural systems T is 0.5 ~ 2.0(sec) .

(1

The stiffness matrix of the structural system with three-
degree-of-freedom is calculated from Eq.(17) as

) 2-02  —(1=)/2") 0
kil =| —(1=X/2") 2=-(1+1/2")A —(1-2)
0 —(1-2) 1-2)

(18)

and the elements of the matrix [a] in Eq.(1) with damp-
ing proportional to its stiffness are given as

a3l @12 a3
fa]=| an1 @622 ay |,
a3 a32 az3

100 w2 2hgwy
a2=|01 0], a3 = 0 0 s
0 01 0 0

. _[ 0 1
33 = )
—wl —2hgw,

a1 =aj3 = a3 = a3z = [0],
: Qz = )?:/ﬁ’l. ,
= 2hy fuy .

an = Wlkyy)

a2 = M6z (19)

Numerical calculations of seismic reliability were made
based on Egs.(5),(7) and (8), using the parameters de-
scribed immediately above. The results are shown in
Figs.(1) and (2), where T1 = 1.0sec , oy = 100/3gal,
wg = 18rad/sec, hy = 0.5 , the safety level in terms of
the storey drift angle = 1/200, and the duration of sta-
tionary excitation= 10sec . In Fig.1, seismic reliability
is plotted as a function of A and v, the latter ranging re-
spectively over 0.1 ~ 0.75 and 0.1 ~ 3.0; and the contour
line corresponding to this is plotted in Fig.2.

Figs.(1) and (2) indicate that the seismic reliability is
extremely sensitive to A , but not so sensitive to v.
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Fig.1 Reliability perspective as a function of A and v :
3 d.o.{. elastic system
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Fig.2 Reliability contour lines as a function of A and v
: 3 d.o.f. elastic system

Parametric survey calculations were also made for the
given parameters, the optimum combination of which
gives for the maximum seismic reliability of the system
the following:

A=0475,v = 1.40 (20)

a combination that agrees quite well with that given in
the paper by T.Kobori et al.(1970). Here, the optimum

parameters based on the presented approach are
A =0.466,v = 1.40 (21)

In Figs. (3) and (4), the similar perspective and

contour lines of the reliability as in Figs. (1) and (2)
are plotted for the case of five-degree-of-freedom struc-
1.0sec, oy

tural systems, where T = 145/3gal,

wg = 18rad/sec, hg = 0.5.
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Fig.3 Reliability perspective as a function of A and v :
5 d.o.f. elastic system
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Fig.4 Reliability contour lines as a function of A and v
: 5 d.o1. linear system

These figures indicate that the general variation of the
perspective and contour lines is similar to tose of three-
degree-of-freedom systems, but that the optimum com-
bination of the indices A and v slightly differs supposedly
dut to the higher order modal response contribution to
the total response.

The optimum combination of the indices giving the
maximum seismic reliability based on the parametric sur-
vey calculation is

A =0.625,v = 1.60 (22)
while the optimum one based on the presented approach
is

A =0.620,v = 1.625 (23)

The mutual consonance of the indices in Eq.(22) and
(23) is also quite satisfactory.

In Figs. (5) and (6), the optimum combination of the
indices () , v) for the case of three- and five-degree-
of-freedom systems are plotted respectively by choosing
the angular frequency ratio p = wy/w; as a parameter ,
where w; = 27/T} is the fundamental frequency of the
structural system and the used symbols for the p are
shown upper hight-hand just outside the figures.

These figures indicate that the smaller value of p gives
the Jarger and smaller value of A and v respectively, while
the larger value of p gives the smaller and larger value
of A and v respectively. This means that the softer the
soil-ground becomes, the more flexible the structure be-
comes; i.e. the larger the optimum stiffness tapering be-
comes. Excitation parameters hy and oy other than w,
have very little influence on the optimum combination of
the indices ( A ,» ), and the associated results with these
facts are omitted here due to the space limitaion.
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Fig.6 Optimum combinations of indices A and v choos-
ing frequency ratio p as a parameter
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Fig.7 Bilinear hysteretic characteristics

3.2 ELASTO-PLASTIC STRUCTURAL SYSTEMS

Here is discussed the optimum distribution of dynamic
elasto-plastic structural properties by taking the bi-
linear hysteretic characteristics ®; shown in Fig. (7) as
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Fig.8 Reliability perspective as a function of @ and 8 :
3 d.o.f. bilinear system

an example where u; is the i-th interstory displacement.

The parameters considered here are the plastic to elas-
tic stiffness ratio r; and the elastic-limit deformation é;,
the distribution of which is given as

() =3{1—a(:;:11)ﬂ} (26)

where ¢ is a standardized elastic-limit deformation, and
@ and § are the similar indices defining the distribu-
tion of {6;} as in Eq.(24). The elasto-plastic structural
system has three-degree-of-freedom, the optimum elas-
tic stiffness distribution just derived above, the uniform
mass distribution, the elastic modal critical damping ra-
tio = 0.05 and the elastic fundamental period = 1.0sec.
The excitation parameters oy = 280/3gal, wy =18
rad/sec and hy = 0.5 are used for numerical calcula-
tions, where the structural system with bi-linear hys-
teretic characteristics were replaced with the stochastic
equivalentl linearizatin system developed by Asano et al.
(1984).

The elements of the coefficient matrix of [A] corre-
sponding to those in Eq.(5) are expressed for this case in
terms of the elastic stiffness and associated damping plus
the equivalent ones for bilinear hysteretic characteristics
of the respective story. Similar numerical calculations
were made on the basis of Eq.(5) ,(7) and (8).

In Figs. (8),(9) and (10),(11), the perspective and
corresponding contour lines of the reliability of bi-linear
hysteretis structural systems with r; = 0.1 and 0.5 are
plotted respectively as a function of « and £ in Eq.(24)
utilizing a parametric survey caluculation. These figures
indicate that the reliability is highly insensitive to the
index 8, while very sensitive to the index o regardless of
the value r;. And the reliability attenuates very rapidly
with the increse of the index o from zero to 0.5 , which
suggests us the optimum elastic-deformation distribution
equal to constant,i.e.

{8:} = {8} (25)
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Fig.9 Reliability contour lines as a function of o and 8
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Fig.10 Reliability perspective as a function of o and £
: 3 d.o.l. bilinear system

4 CONCLUSIONS

This paper has developed an analytical approach to dy-
namic design parameters for elastic and elasto-plastic
structural systems based on the optimum seismic reli-
ability, and presented illustrative numerical results. The
conclusions are summarized as follows:

1. Probabilistic earthquake response was estimated as
a solution of simple simuitaneous algebraic equations by
assuming an earthquake-like random excitation to be a
stationary random process with a given excitation level,
predominant angular frequency and spectral shaping fac-
tor.

2

S,

Based on this probabilistic earthquake response,
seismic elastic structural reliability and its associated
derivative with respect to design variables were evalu-
ated, and the optimum parameters determined.

3. The validity of the approach was demonstrated
by examining the perspective and contour lines of the
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seismic reliability as a function of design parameters for
simple elastic structural systems with three- and five-
degree-of-freedom.

4. While the predominant angular {requency has ma-
jor influence on the optimum elastic parameters, other
excitation parameters than this have very little influence.

5. The seismic elasto-plastic structural reliability were
evaluated, and the optimum parameters for bilinear hys-
teretic systems were determined using a parametric sur-
vey calculation.
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