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A method for prediction of hysteretic response to earthquake excitations
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ABSTRACT: A new method for prediction
earthquake excitations is presented.

of the stochastic response of hysteretic systems to
The mathematical model used for ground acceleration can

express the nonstationarity of amplitude, strong motion duration and frequency content. The

nonlinear model used for hysteretic systems can show the nonlinear behavior

nearly elastic-perfectly plastic and can
easily.
analyses based on dividing the
including oscillations and drifts.

proposed method.

1 INTRODUCTION

In earthquake engineering one of the main
goals 1is the optimum aseismic design of
structural systems. This means that the
design should be both reliable and economic-
al. Stochastic response analysis is an ap-
proach which improves reliability and eco-
nomy of the design. To increase the preci-
sion of this approach the nonstationarity of
earthquake excitations and the hysteretic
behavior of structural systems have been
taken into consideration in recent decades.
Kaul (1972) has investi gated inelastic
response of offshore towers by using the
Kolmogorov-Fokker-Planck differential
equation. Some other methods based on
Markov vectors and Galerkin technique and
also the stochastic linearization technique
have been presented of which the latter can
consider the non-Gaussian properties of the
response. All of these methods wuse the
Kryolov-Bogoliubov approximation. A method,
which does not need this approximation has
been also presented by Baber and Wen (1979).
In addition to linearization techniques some
other methods have been also used for hyste-

retic response analysis. Goto and Iemura
(1973) have been used the energy balance
criteria. Irschik and Ziegler (1985) have

presented a method based on dividing the
displacement of the system into two parts
including drift and linear vibration. Ito
differential equation and closure techniques
have been also used, and Paparizos (1986)

has used the district Markov process. The
nain disadvantage of linearization tech-
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history of stochastic response into two

from smooth to

t consider the stiffness and strength deterioration
The response evaluation method is a combination

of frequency domain and time domain
sets of motions

- ) Comparison of numerical results obtained by the proposed
method with those of time history analysis show

the high precision and reliability of the

niques is their doubtful precision as ex-
pressed by some researchers a varying error

between 0 and 20% for them. The basic
reason for this varying error is the hyste-

retic behavior of structures as described by

Hosseini (1991), and will be discussed
briefly in this paper.

On the other hand the models used by re-
searchers for hysteretic behavior of struc-
tural systems include bilinearandelastic-
perfectly plastic models, Wen model and a
few other models which all have some dis-
advantages like insufficient or imprecise
matching with real behavior, difficulty in
system identification experiments and show-
ing nonphysical behavior in some special
cases, as shown by Jayakumar (1987).

Regarding the shortcomings of existing
models and methods, in this paper by using a
powerful nonstationary model for ground
acceleration and a recently introduced model
for hysteretic systems (Hosseini and Ghafory
Ashtiany, 1991) a new approach is presented
for stochastic response evaluation based on
a special combination of frequency domain
and time domain analyses and dividing the
response history into two separate sets of
motions each consisting of either oscillat-
ions or drifts. Numerical calculations show
the high efficiency of the presented
nonlinear hysteretic model and the proposed
stochastic method specially in the case of
nonstationary excitations. Comparison of
the results of proposed method with those of
time history analysis show the good preci-
sion and reliability of the presented
stochastic formulation.



2 THE NONSTATIONARY GROUND ACCELERATION

Among different models presented and used
for nonstationary ground acceleration the
model of production of a stationary process
%o(t) and a deterministic envelope function
e{t) is one of the most advantageous models,
which can be expressed by:

fg(t)= %o (t)-e(t) (1)

In this model the nonstationarity of
duration and amplitude of the process Xg(t)
can be satisfactorily expressed by e(t) and

if the power spectral density function
(PSDF) of process Xo(t) is considered to be:
3 Si[so+(2Rsiw/wsi)?]
Sgo(W,t)= (2)
i=l (1-w?/wsi?)%+(2Bsiw/Wsi)?

as suggested by Hosseini (1990), the non-
stationarity of frequency content of process
%g(t) can be easily taken into account. In
equation (2) Si is the spectral intensity of
the ith mode of the soil structural model,
so is a constant between 0 and 1, and
wsi=wsi(t) and Bsi=Bsi(t) are time-dependent
modal frequencies and damping ratios given
by:

wsi(t)= Woi- ai-t Bsi(t)= Boi+ bi-t (3)

where woi and Boi are respectively initial
frequency and damping ratio of the ith mode
of the soil structural model and ai and bi
are constants. Eqs. (3) show decreasing
predominant frequency and increasing damping

ratio of the so0il model which have been
suggested by some researchers (Nozawa et.
al. (1988)). Figures 1 and 2 show PSDF of
processes Xo(t) and Xg(t) respectively. As
it is seen the predominant frequency of
processes has been shifted gradually to

lower frequencies.

Figure 1. PSDF of process %o(t) -
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Figure 2. PSDF of process Xg(t)
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This model of the nonstationary ground
acceleration has been used for stochastic
response analysis of linear systems by
Hosseini and Ghafory-Ashtiany (1989) and for
nonlinear systems by Ghafory~Ashtiany and
Hosseini (1991) to derive the closed form
formula for the response. Application of
the model to hysteretic systems has been
also shown by Hosseini and Ghafory-Ashtiany
(1991) and is developed in this paper.

3 THE NONLINEAR HYSTERETIC SYSTEM

To analyze the stochastic response of hyste-

retic systems it is necessary to have a
nathematical model which can show the real
behavior of hysteretic systems as precise as

possible, For this purpose Hosseini (1991)

has presented a simple mathematical function

for expressing the hysteretic resistant

force r(x) versus displacement x of the
system which for the virgin curve is:

sign(x){exp(-A/(|x]/xy+B)?]1-C}
rv(x)= ru )
1-C

where ru is the ultimate resistance, xy is
the yielding displacement defined as xy=k/ru
in which k is the initial stiffness of the
system, and A, B and C are positive quantit-
ies depending on P by:

BP (P+1)
A= B=
P (1/Cc-1)

(P+1) 1
Cz —————— (5)
exp(1+1/P)

P is called the model order and controls the

rate of change of the system stiffness.
Figure 3 shows different curves of the model

for different values of P. It is seen that

as P increases the model approaches the
elastic-perfectly plastic state.
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Figure 3. Virgin curves of nonlinear model

For descending and ascending curves based
on Masing rules the following relation is
used:

ri(x)=s rr,i+t2ru-sign(x-xr,i)
exp[~A/(|x—Xr,1|/2/Xy+B)P]-C

(6)
1-¢C

where ri(x) is resistance value on the ith
branch of the hysteretic curves, and xr,i
and rr,i are respectively the displacement
and resistance of the system at ith
reversing. Regarding that the rate of
system deterioration is proportional to the
hysteretic dissipated energy as expressed by
Baber and Wen (1979), the model is capable
to show deterioration easily by supposing a
linear variation for the ultimate resistance
and the model order with respect to hyste-
retic dissipated energy, namely:

ru(Eh)= ruo- ar*En P(En)= Po- ak *En (7)

hysteretic dissipated energy,
respectively the initial
resistance and model

order, and ar and ax are the reduction

coefficients of resistance and stiffness

respectively. Figure 4 shows the hysteretic

curves of the model in different states. It

is seen that the presented model has three
advantages: 1) a simple and explicit
mathematical form, which is useful in the
stochastic analytical response evaluation,
2) capability of showing the behavior of a
great variety of nonlinear softening system,

which make possible to use the model for
different structural systems, and c) having
only three main parameters, which make the
system identification very easy. Considering

the advantages of presented model it can be
introduced as an effective tool in stochas-
tic response calculation of nonlinear
hysteretic systems.

where En is
ruve and Po are
values of wultimate
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Ar(X)/ru

P=1 1

r(x)/ry
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Figure 4. Hysteretic loops of the model in
different states, a) without deterioration,

b) with stiffness deterioration, ¢) with
resistance deterioration, d) with combined
deterioration



4 THE RESPONSE PREDICTION METHOD

There is two great differences between the
behavior of hysteretic and elastic systems.

The first is that in elastic system after
oscillations even with very large amplitude
the system returns to its initial static
equilibrium state, whereas in hysteretic

state if the system sustains a large
displacement due to strong excitations, it
does not return to its initial equilibrium
situation and stops in a different position.

The second difference is in the quality of

change of system stiffness, which for
elastic systems is gradual during the
history of motion, but for hsyteretic

systems is sudden at reversing instants of
the motion. In fact in the hysteretic case
at reversing instants stiffness of the
system suddenly jumps to its initial value.
This sudden change in the stiffness of the
systems gives it a dual behavior, which can
not be stated mathematically by a single
equation. In the case of elastic-perfectly
plastic behavior the motion of the system
can be divided exactly into two separate
sets of motions, namely oscillations and
drifts. This can be expressed by:

neXe(t)+ coXe(t)+ kexe(t)=-m-Xg(t) (8)
te,i-15tSty, 4

meXa(t)+ c+%a(t)+ ru=-m-Xg(t) (9)
th,iSts<te, i

where xe and x4 are system displacement in
elastic and plastic states respectively, and

tb,i and te,i .are the beginning and ending
instants of the itP drift motion. In

deterministic analysis these instants can be

computed exactly. In stochastic analysis,

finding tb,i instants is in fact a level
crossing time problem, which has been solved

only for stationary state. To solve this
problem for nonstationary excitations paying

attention to the conditions in which the
amplitude of the system motion increases and

exceeds a specified level is helpful. This
exceeding can occur in two different situa-
tions. One is resonance and the other is
intense shock. In the case of earthquake
excitations the first situation is more

reasonable. In fact it can be said that
before going to plastic phase the system ac-

complishes at least one oscillation with a
period near to its natural period, so it can

be supposed that the motion is similar to an

sinusoidal oscillation with the frequency wa

of the system, namely:

Xe(t)= xm sin(wat) (10)
where xa is the maximum amplitude. On this

basis the passage condition of the system
from the level xy can be written as:
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E[Xez(t)]ZXyz/z (11)

Considering the response evaluation method
of linear system presented by Hosseini and
Ghafory~Ashtiany (1989), the mean square

response (MSR) to nonstationary excitations
can be calculated as a function of time by
using a suitable time step. Then using the
criterion given by relation (11) the passage

time can be computed by interpolation in
that time step within which the passage
condition is satisfied. After passage the
governing equation of motion 1is equation
(9). In deterministic analysis the
mathematical form of ground acceleration is
known and equation (9) can be solved easily,

but the solution form 1is such that the

instant at which the system velocity becomes

zero, namely the reversing instant can not
be derived analytically. To have a solution

with the desired mathematical form a simpli-

fication is used considering the little

effect of damping in dissipating energy in
comparison with the effect of plastic de-
formation of the system. Then by omitting
the damping term of the left hand side of
equation (9) it reduces to:

me¥d (t)+ ru= -m-Xg(t) (12)
By solving equation (12) one can obtain:
Xd(t)= ke (tb)+xg(tn)-Xg(t)-ru(t-tp)/m  (13)

xd(t)= Xe(tb)+xg(to)-xg(t)+[Xe(tn)+
kg (tu)](t-tb)-ru(t-tv)?/(2m) (14)
From equation (13) the duration of drift

motion is obtained as:
te-tb= m/ru-[Xe(to)+Xg (tv)-%g(te)] (15)

Equation (15) shows that the drift duration
depends on velocity of the system at the
beginning instant of drift and also ground
motion velocity at beginning and ending
instants of drift motion of the systenm,
which are all unknown. To overcome this
difficulty it is suggested to use the energy
balance equation at beginning and ending
instants of drift motion and an assumption
about the variation of ground acceleration
before and during drift motion of the system
based on the conditions in which the system
state changes from oscillatory to drift.
Energy Balance equation, neglecting damping
effect, can be written as:

%m[*e(tb)**g(tb)]z=
%m[ig(to)]1+ru[xa(t-)—x-(tb)] (16)
On the other hand, based on the necessary
condition .for change of system state from
elastic to plastic phase, ground accelerat-
ion variation just before and during drift
motion of the system can be assumed as a



sinusoid with frequency wa.
assumption, duration can be calculated by
equation (13), but not analytically. To
have an analytical solution for drift durat-
ion the aforementioned sinusoid can be ap-
proximated by a rectangular wave as shown in
figure 5.

With this

2n/wa

%a (t) —

aj- - - = == N

a) Acceleration

2n/wd

aut/(ZWd)'m——__1
//\ /\\ t
-an/(2wd4) \V/

b) Velocity

xg (t)

Figure 5. Assumed variation for ground ac-
celeration and velocity for calculating
system drift duration

o

The parameter "a" in figure 5 is the time-
dependent average amplitude of ground ac-
celeration and can be determined statistic-
ally by using recorded accelerograms. Based
on the described assumption equations (13)
to (16) reduce to:

xd(t)= (a-ru/m)(t-tb)+Xe(tb) tb<te(tb+m/wa

(17)
xd(t)= $(a-ru/m)(t-to)?+Xe (tb)(t~tn)+xe (tv)

(18)
te-tb= -%e(tb)/(a-ru/m) (19)

{1+ ru/(m-a-ru)=-a*/(a-ru/m)?)[Xe(tv) ]2~
a%n/[wa(a~ru/m] xe(tn)= 0 (20)

It should be noted that depending on values
of "a" and Xe(t) the drift duration might be
less or more than w/wa, and if it is more
than this value at first system displacement
and velocity values at instant te+w/wd
should be calculated by using equations (17)
to (20) and then by using the equations of
the second half of the assumed oscillationm,

the drift value and its duration can be
calculated. After each drift, the systenm
goes again to the elastic phase and the
governing equation 1is equation (8), but

there is in it an initial displacement of xy

with respect to the last equilibrium
situation. Then, the system displacement
after drifts is consisted of one free

oscillation part xf due to the initial dis-
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placement and one forced part due 'to the
existing excitations, namely:

6
-m*Xg(t+te)+h(6-1)-dr
0

where 6=t-te. On this basis the mean square
response with respect to the last static
equilibrium position of the system can be
written as:

(21)

Elxe?(t)1= sz(9)+[]ﬂn(w,6)[Z-Sg(w,t)-dw
- (22)
in which:

]
Hn(w,8)= Je(t+te)-h(e—t)-exp{-iw(e-t)]-dt

0 (23)
Performing the described calculation in a
recursive manner the drift displacements and
their durations as well as the mean square
response with respect to each new equilib-
rium situation of the system can be obtained
easily.

The explained procedure for stochastic
response analysis which is exact for the
elastic-perfectly plastic hysteretic systems
can be used for smooth hysteretic system
with a few modifications. In the smooth
hysteretic case instead of exact linear
vibration and plastic drift motion there is
a linear-wise vibration in which the mean
square response can be calculated by using
the equivalent linearization technique in
the nonstationary state presented by Ghafory
Ashtiany and Hosseini (1991), and a plastic-
wise motion in which the drift values can be
estimated by using the explained procedure
only by substituting ru by an average value:
ra= (ry+ Peru)/(P+1) (24)
where ra is the average resistance of the
system during drift motions, ry=rv(xy) and P
is the order of the hysteretic model. In
equation (24) if P approaches infinity then
rda approaches ry=ru as is expected according
to the description given about the nonlinear
hysteretic model.

5 NUMERICAL RESULTS

To show the efficiency of the proposed model
and method, and the high precision and reli-
ability of the predicted hysteretic response
some numerical calculations have been done
with different values of system initial
frequency and damping, and also model order,
and the result of stochastic method have
been compared with those of time history
analysis method. A sample of numerical
values used for the Thysteretic system
characteristic is given in table 1 showing a
case with medium xy and another case with
small Xy. The response curves of these to
systems subjected to two different Iranian
earth quakes one short and the other long
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Figure 6. Comparison of stochastic and
deterministic responses, a) system with

medium xy subjected to Naghan earthquake,
duration=5 sec., b) system with small xy
subjected to Tabas earthq., duration=25 sec.

Table 1. Sample values used for the charac-
teristics of the hysteretic systenms

nat.freq.(cps) damp.ratio (¥) P Xy
2.0 10 5 0.05
2.0 10 5 0.005

duration are presented in figure 6 showing
both stochastic and deterministic responses.
Regarding that the stochastic procedure does
not care the direction of drift motions

the closeness of absolute values of these
two responses are quite satisfactory.

6 CONCLUSIONS

Based on the numerical it can be
concluded that:

a) The nonlinear hysteretic model is an ef-
fective tool for stochastic response ana-
lysis of hysteretic systems.

b) The proposed response prediction method
is an easy and useful procedure with high
precision and reliability, specially in the
case if nonstationary excitations.

c) Number of drifts depends on the strong
motion duration of excitations. For short
earthquakes usually one great drift occurs.

results
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