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ABSTRACT: The objective of this paper is to describe a new probabilistic approach for determining the
dynamic response of structural systems with uncertain parameters. The approach provides a means of
computing the response uncertainty due to uncertainty in model parameters when a structural system is
subjected to either deterministic or stochastic excitation. Some applications of the proposed method to
the area of earthquake engineering are presented. It is shown that parameter uncertainties may cause very
significant changes in the response of structures subjected to earthquake loading.

INTRODUCTION

Uncertainty in model parameters should be
accounted for in the description and analysis
of real structures. Such uncertainty can arise
from assumptions made when modeling geometry,
material properties, constitutive laws, and boundary
conditions, or from the specification of external
loads. The latter uncertainty often arises when
the loads result from a physical process, such as
an earthquake, so complex that it is best modeled
as a stochastic process. The effects of uncertain
parameters are often accounted for in design by
analyzing systems with various combinations of
bounds on the uncertain parameters, or by spectrum
broadening (Shinozuka and Jan, 1972; Astill, et
al, 1972). Alternatively, simple second-order
perturbation techniques have been used to obtain
approximate analytical estimates of the effects of
uncertainty (Liu, et al, 1987). All these approaches
have limitations on accuracy and the level of
information which they provide (Benaroya and
Rehak, 1988; Jensen, 1989). These limitations
are particularly restrictive when dynamic, especially
transient or wave propagation problems must be
analyzed.

In this paper a new probabilistic approach
is described for studying the dynamic response
of linear systems with parameter uncertainties.
The parameter uncertainties are modeled in a
probabilistic sense through random variables or
random fields. In what follows, the proposed
method is initially formulated for single-degree-
of-freedom systems subjected to deterministic
excitation and is then extended to multi-degree-
of-freedom and continuous systems. Finally, the
method is extended to cases where the excitation
is random in time.

FORMULATION

Consider a simple single-degree-of-freedom struc-
tural model defined by the equation of motion

E(t) + 2¢2(t) + wiz(t) = f(2) , (1)

where ¢ is the damping ratio, w is the natural
frequency, f(t) is the external load, and and z is the
displacement of the system. The initial conditions
are taken to be z(0) = z, and £(0) = .

Let the natural frequency be assumed to be
uncertain, while the damping ratio, external
load, and initial conditions are assumed to be
deterministic. The natural frequency may then be
described by means of a random variable which is
defined in terms of its mean value and a deviatoric
component as:

w=wo+Ab , (2)

where @ denotes the expected value of the natural
frequency, A is a deterministic coefficient, and b is a
random variable with zero mean and unit variance.
Therefore, the second-moment representation of
the natural frequency is given by E(w] = ® and
Var(w] = A2, where E|[-] is the expectation operation
and Var[:] represents the variance of the random
variable.

The dependent variable z(t) is now an explicit
function of the random variable b. It may thus
be expanded in a series over b by means of an
orthogonal set of polynomials weighted by time
dependent functions as

NP
z(t,b) = ) z;(t) H;(b) (3)

=0
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where NP is the order of approximation in the
random space, z;(t) is an unknown deterministic
function of time, and {H;(b)}32, is an orthogonal
set of polynomials with respect to the mean
operation. That is,

E{H;(8)H;(b)] = &; (4)

where &;; is the Kronecker delta. The preci§e
selection for the set of polynomials, H;(b), will
depend upon the probability density function of
the random variable b. For example, Legendre
polynomials satisfy the orthogonality condition for
a uniform random variable, Hermite polynomials
do likewise for a Gaussian random variable, etc.
(Jensen, 1989). )

A set of differential equations for the deterministic
functions of time, z;(t), may be obtained by means
of the weighted residual method together with the
use of first- and second-order recurrence relations
for the orthogonal set of polynomials. The details of
this procedure have been given elsewhere by Jensen
and Iwan, (1991).

Once the equations for the unknowns z;(t) have
been solved, an analytical approximation to the
solution in the random space is completely defined
by equation (3), and the statistical moments of the
response can be computed directly. For example, it
can be shown that the mean value and the variance
of the response are given by

NP
Elat) =zo(t) , Verlz(d)] =3 250). (5)

A similar characterization may be given for the
velocity and acceleration responses.

In order to illustrate the influence of an uncertain
natural frequency on system response, an oscillator
with a uniformly distributed natural frequency
subjected to an earthquake-like base excitation
is considered. For the example presented, the
uncertain frequency has a coefficient of variation
of 10 per cent with a mean value of 2 Hz. A
nominal damping corresponding to 5 per cent of
critical based on the mean value of natural frequency
is assumed.

Figures 1 and 2 show the mean value and standard
deviation of the absolute acceleration response of
this simple structure. In this example, the standard
deviation of the response is of the same order of
magnitude as the peak response. This is typical.
The example clearly demonstrates the high degree
of variability of the response due to uncertainty in
the natural frequency and suggests that great care
must be exercised when interpreting the calculated
response of a structure if its physical properties are
not precisely known.

A sixth-order approximation (NP) in the random
space has been used in this example. The need to
.use such a high order approximation arises due to
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the high degree of nonlinearity of the response as
a function of the uncertain parameters. Validation
calculations show that the results from the present
method agree quite well with those obtained by
simulation techniques. These validation calculations
also show the inadequacy of the simple second-
order perturbation method (Jensen, 1989). The
new formulation can easily be extended to problems
with uncertainty in both the natural frequency
and damping ratio. The details of this are given
elsewhere in Jensen and Iwan (1991).
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Figure 1: Mean value of the absolute acceleration
response of a Single-Degree-of-Freedom structure
with uncertain natural frequency subjected to
earthquake-like excitation
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Figure 2: Standard deviation of the absolute acceler--
ation response of a Single-Degree-of-Freedom struc-
ture with uncertain natural frequency subjected to
earthquake-like excitation

EXTENSION TO MULTI-DEGREE-OF-
FREEDOM SYSTEMS

The formulation previously presented can readily
be extended to multi-degree-of-freedom systems.
Consider a linear structural system with mass,
damping and stiffness matrices M, C and K, and
an excitation f(t). The equation for the response of
the system, x(t), is given by

Mx(t) + Cx(t) + Kx(t) = £(t) . (6)



The damping and stiffness of the system are
assumed to be uncertain. These parameters are
taken to be time-invariant and are modeled as
random variables. Further, it is assumed that the
damping matrix and the stiffness matrix allow the
following representations

r r
C=C+) Cubn , K=K+ Kub, (1)
n=1 n=1
where C, K, C,, and K,, are deterministic matrices,
and b,,n = 1,...,r are independent zero mean
random variables used to represent the uncertainty
in damping and stiffness properties. The terms
C and K represent the expected values of the
damping and stiffness matrices, respectively, and the
summations represent their deviatoric component.
This representation of the damping and stiffness
matrices is similar to the expansion used by
Lawrence (1987) for random parameters with known

second-order statistics.

In order to solve equation (6), the dependent
variable x(t) is expanded in terms of a series of
orthogonal functions which depend upon a random
vector b with components b,,n = 1,...r. Then, the
solution takes the form

r
x(b)t) = Z Xey...L, (t) H Hg: (b,) (8)
0<|l|ENP s=1

where NP is the order of approximation in
the random space, Xg,.. (t) is an unknown
deterministic function of time, 1 is a vector with
components £,,s = 1,...,r, |l| stand for the |- |;
norm of 1 and {H}*(b,)}%, is a set of orthogonal
polynomials. As above, the selection for the set
of polynomials depends on the probability density
function of the random variable b,. A set of
differential equations for the coefficients Xy, ..., (t)
can be derived as before by means of the weighted
residual method (Jensen, 1989).  Once these
equations have been solved in time, the response
uncertainty and statistics can be computed directly.

To illustrate the application of the method a
twenty degree-of-freedom system representing a
simple uniform structure is subjected to an impulse
base excitation. The structure is assumed to have
a nominal fundamental frequency of 2 Hz with
nominal Rayleigh damping corresponding to 5 per
cent of critical in the first two modes. The stiffness
of the structure is assumed to be a one-dimensional
homogeneous strongly-correlated Gaussian random
field with a 20% coefficient of variation. By
means of spectral decomposition of the random field
correlation properties, it is easily shown that the
stiffness matrix of the system can be written as in
equation (7) (Jensen, 1989; Spanos and Ghanem,
1989).

The response variability of the absolute acceler-
ation at the top of the structure is presented in

Figure 3. It is noted that the dispersion about
the mean value response, as measured by the stan-
dard deviation, is substantial being of the order of
one-quarter of the peak mean response. The level
of response uncertainty shows that the presence of
uncertainty in the physical properties of a structure
can markedly alter its response characteristics. As
in the case of the single-degree-of-freedom-system,
validation calculations show that the agreement be-
tween the proposed method and simulation is ex-
cellent (Jensen, 1989). Similar results are obtained
when more complex base excitation, such as an
earthquake excitation, is considered. The formula-
tion presented for multi-degree-of-freedom systems
can easily be extended to conmsider continuous sys-
tems described by partial differential equations of
second and higher order (Jensen, 1989).
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Figure 3: Response of a Twenty DOF structure
with uncertain stiffness subjected to an impulsive
base excitation. (1) Mean value of the absolute
acceleration response at the free end of the
structure. (2) Standard deviation of the absolute
acceleration response at -the free end of the
structure.

EXTENSION TO STOCHASTIC EXCITATION

Consider the general class of problems in which
the base excitation can be represented as a
nonstationary Gaussian white noise process with
zero mean. It is well known that the response of
a linear system subjected to a Gaussian excitation
is also a Gaussian process. If the mathematical
model of the system is describable by a multi-degree-
of-freedom linear system, then the displacement
and velocity vectors of the system are zero-mean
jointly Gaussian processes. A Gaussian process
is completely defined by its mean vector and
covariance matrix, but due to uncertainties in the

‘system properties, this description is itself random.

That is, the coefficients of the covariance matrix are
random variables. Using a formulation similar to
the one used for multi-degree-of freedom systems,
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a random first-order differential equation for t}}e
evolution of the nonstationary covariance matrix
with time can be derived directly (Jensen, 1989).
Then, the covariance equation may be integrated in
time and the response variability computed.

As an example of the application to problems
with stochastic excitation, the random response
of a primary-secondary system to earthquake-hk_e
excitation is presented. The primary system is
modeled by a five-degree-of-freedom system. The
primary structure is assumed to be nomlna_lly
classically damped with 5% of critical damping
in the first two modes, and with a nominal
fundamental frequency of 2 Hz. The secondary
system, which is attached to the top of the
primary structure, is idealized as a single-degree-
of-freedom oscillator with 2% of critical damping.
The base acceleration is modeled as a filtered,
modulated white noise process. The ratio between
the natural frequency of the secondary system and
the fundamental frequency of the primary system
is taken to be 0.75 (a nearly tuned condition), and
the secondary system to primary system mass ratio
is taken to be 0.01. The primary system stiffness
and damping are separately assumed to be uncertain
and are modeled as uniform random variables with
a coefficient of variation of 30%.

Figure 4 shows the influence of uncertainties in
the primary system parameters on the absolute
acceleration response of the secondary system.
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Figure 4: Absolute acceleration response of a SDOF
secondary system attached to an uncertain Five
DOF primary structure subjected to a stochastic
base excitation: (1) Normalized nominal solution.
(2) Normalized mean plus one standard deviation
value of the solution when the stiffness is uncertain.
(3) Normalized mean plus one standard deviation
value of the solution when the damping is uncertain.

The duration of the excitation is equal to 15 T,
where T is the fundamental period of the primary
system. The transient R.M.S. value of the response
is normalized by the stationary standard deviation
of the response of the nominal system, and the

time is normalized by the fundamental period of
the primary system. There is very little influence
of the uncertainty in the damping on the response
of the secondary system for this case. On the
contrary, uncertainty in the primary system stiffness
has a strong influence on the variability of the
response of the secondary system. The mean
plus one standard deviation value of the stationary
response for this case is more than twice the nominal
stationary solution. Thus, the response variability
associated with stiffness uncertainty is of the same
order of importance as the uncertainty in the input
excitation. The high sensitivity of the solution to
uncertainty in stiffness in this case is due to the
strong influence of tuning on the secondary system
response, particularly for small mass ratios, and
the likelihood of such tuning when the stiffness is
uncertain.

CONCLUSIONS

The proposed method provides a powerful and
useful tool for treating uncertainty in models
of structural systems excited by earthquake-like
excitation. The method can be used to analyze a
broad range of complex engineering problems using
present computer hardware.
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