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Abstract: A dynamic system identification has become increasingly important in area of structural
engineering, and the extended kalman filter is to be effectively used in structural system
identification method of static as well as dynamic phenomena. These systems are generally much
larger in size and much more complex and manifest intricate behavior under seismic excitation so
that accurate mathematical idealization is not easy. Therefore, for the purpose of effective struc-
tural engineering applications specialized techniques of system parameter identification need to be

developed.

This paper studies a system parameter identification procedure based on the extended Kalman
filter, which may accommdate the finite element method relevant to the identification on such
complex systems. This procedure is named extended Kalman filter-weighted local iteration
procedure. And numerical studies are carried out for demonstration. '

1 Introduction

Recently, the extended Kalman filter has been
applied on structural identification problems
by many authors, which is essentially a method
of sequential least squares estimation, and the
vast applicability of the filter was clarified not
only for dynamic parameter identification but
also for many other, static or dynamic system
identification problems. In the past, one of the
authors studied the application of the extended
Kalman filter in the identification of linear and
nonlinear structural systems subject to sisemic
excitations, and it was found that dynamic
properites of systems were identified in a
recursive way by filtering procedure.

In this study, a weighted local iteration
procedure with the extended Kalman filter was
newly developed and applied on system
parameter identification using a linear single
degree of freedom system as a pilot model. This
procedure is named the EK-WLI procedure. In
this procedure, we locally iterate the filtering
process by purposely amplifing error
covariance on each set of observation data so
as to attain faster and stable convergency.

On the other hands, dynamic simulation
procedure often uses finite element method,
because these systems are generally much
larger in size and much more complex. Besides,
general structural systems either super
structures or soil foundations are often
represented by a finite element method model-

ing.
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In order to solve problems under this situation,
a procedure is developed to identify system
parameters of a finite element wmodel by
effectively applying the EK-WLI procedure. In
this procedure, emphasized is an independent
treatment of the finite element method
algorithm apart from the main flow of the
Kalman filtering so that any finite element
method code may be incorporated with the
Kalman filtering without rearrangement.

In order to investigate the procedure, a linear
single degree of freedom model is identified on
the basis of simulated data under various noise
conditions. Finally, numerical examples are
demonstrated to show the usefulness of the
proposed method.

2 EK~-WLI Procedure

In this procedure, we locally iterate the ex-
tended Kalman filter algorithm by purposely
amplifing error covariance matrix on each
iteration , in order to obtain stable solutions as
well as their fast convergency to optimal solu-
tions.

2.1 Extended Klaman filter

The extended Kalman filter algorithm is a
recursive procedure to estimate the optimal



state vector X(t./tx) and the corresponding
error covariance matrix P(t./t.) on the basis
of nonlinear continuous state vector equation
and nonlinear discrete observation vector
equation as follows.

dXt/dt=f(Xt,t)+GtWt (1)
Yt,.zh(Xt.,tw)+Vt, (2)

in which X(t./t.)=state vector, Yt,.=observa-
tion vector at t.=kdt, Wt and Vt,=system and
observation noises respectively. They are
vectors of zero mean white noise Gaussian
processes with

Elwty wt,T]=Qt d trs » E[Vts
and J t..=Kronecker delta.
If the initial state vector X(to/to)=Xto and the
error covariance P(to/to)=Pto are given and
then as the observation Yt, are processed, it is
possible to estimate the state vector X(t./tx)
and the error covariance P(t./t.) from the
following extended Kalman filter algorithm.

th+1

Rt /)=R (b /th)+ § EIR(L/L),t)dE (3)

vt T1=Qtx S the

Pltusr/ti) =B tusr b Rte/t) IP(ti/th)
*¢T[th¢!)tk;g(tk/tk)]+rththTtK (4)

Rltser /tye) =R s /) +R bR (b /80))
*[Ytk_h{2<th*l/tk)ytk+|)] (5)

Pt /tss )=[I"K(tk+l;g<tk+l/tk)}

EM{ter 3R (Lt /80 P (Eay /)

KI-K{t w38 b /80 IM{t e 5K (e /81T
Rt e 3R (b w s /8 IR ke KT {(then 1 R (Eww ) /80)1(B)

K{twer ;X (tee) /8))}TP (thuy /i)
AMT (b ;R (s /8 HM b iR (e /80))
XP(ths /LM (L ;R (t st /) MR I7 (T)

in which ﬁ(tk/tk)zstate estimate at t, given
Yt., P(tk/tk)zcovariagce matrix of error in
Rtu/tn)y @ [tusrtiX(t/te)]=state transfer
matrix from tn. to trsis Kltws:r;X(tws:/te))
=Kalman gain matrix at t..., Yt.={yto,ytu},
yt.=observation at t,, Iza unit matrix and

ot ] g
Xy th=x(tk/tk—|3

in which h;=the ith component of h,(Xt,,tx), and
X; = the jth component vector of Xt.. The ¢
matrix in this algorithm is given from Taylor's
expansion of first order as follows.

Mity;R (b /bty ))= [

¢[t)'.¢llth;x(tk/tH)]=I+AF(tH;x(tk/tk)) (9)
8f, (Xt ty) .
RS Xth=X(th th)

in which d4=sampling interval of observation
waves.

Flt;R(tw/ty))= [ (10)
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Fig.1. Algorithm of EK-WLI procedure

2.2 EK-WLI Procedure

Since a finite duration time of observation
waves and arbitrarily assigned values for

initial conditions are used and linearization of
the state vector equation by Talor'’s expansion
is employed in the analysis, it is doubtful that
the estimated parameters are stable and
convergent to exact ones. Therefore, it is
necessary to assess the correct estimated
parameters in terms of stability and
convergency. A weigthted local iteration
procedure, including an objective function for
the stability, has been developed. This
procedure is shown in Fig.1.

In order to release the linearization effect of
the observation vector equation and/or the
state vector equation on the estimation error,
and to promote stable convergency to the op-
timal solution despite of small amqunt of
observation data, a weighted local iteration
procedure is proposed.

This procedure is to locally iterate the filtering
process on the first set of data in order to
assess the information inherent to the data,
Here, at every iteration, the error covariance
matrix of estimation is enlarged with a
modification weight to faster the convergency.

Then, the second set of data is processed to
the filtering similarly and the third one and so
on. This procedure is named the extended



Kalman filter-weighted local
procedure.

Also in the weighted local iteration procedure
of each set of data , applied is the iterated ex-
tended Klaman filter. In the iterated extended
Kalman filter with 2, time iterations the state
vector X(tx.)/ty) is replaced by the iterator
7 1 The iteration starts with 7, =R(t.,,/tx),
and terminates after 2, time iterations. After
%, th iteration, the covariance matrix is then
computed based on ﬂnl:ﬁ(t‘k‘tl/tk-bl) , and the
last iterate 79g,, is taken for the estimate
y(t)'.*l/t)(*l)‘

In this proceadure employed is double loop
iteation on each set of data. This procedure
of the extended Kalman filter may be effective
under a finite sets of observation, and an
efficient method to identify f(tH,/tH, ).

And then, the covariance matrix is multiplied
by a weight, W. In order to attain faster and
stable convergency of the state vector, again
the extended Kalman filter algorithm is locally
iterated. Covariance matrix which corresponds
to the convergency of state vector, is actually
distorted by a weight, W. So, for the
confirmation of state vector convergency, an
objective function is used.

However, it must be carefully examined to see
whether or not the estimated parameters are
stable and convergent to true ones, since only
finite duration time of observation data and
initial conditions are to be used in the analysis.
The objective function is represented by

iteration

Q\Lquxtn“h\(ﬁ“«/txn (11)
M M

9:1/M(ZQX2tn/EYl2tk) (12)
i=1 i=1

in which Mznumber of sampling points of ob-~
servation waves. § =objective function. There-
fore, 6 min Indicates that the difference
between each observation and corresponding
estimate becomes minimum.

3 Numerical Example 1

Consider a linear single degree of freedom sys-
tem of shear type shown in Fig.2.

This example has been already discussed and
solved by many authors. But, in order to check
our procedure, the algorithm in Fig.1is used to
solve this simplest problem.

The governing equation of motion is given by

i+2 B w ot w3ou=-lop (13)

in which u, and ii are response displacement,
velocity and acceleration.

{io=input acceleration, g=c/2(mk)' %, w*c=k/m,
B =coefficient of critical viscous damping, wo=

B wo

Uo

Fig.2. SDOF model
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Fig.3. Input acceleration

natural circular frequency. Equation(13) may
be reduced to the corresponding state equation
by introducing the state variables, x,=u and
Xz=U, and input u=ig

[2]: | 260 0te-wmoxi-u ] (14)

Then letting xs= # and Xx.=w o, and assuming
that 8 and w are constant with respect to
time, the nonlinear continuous state equation
can be represented as follows.

kl X2

Ka| - | -2XaX4X=2—Xa®X1-u

Xa| = 0.0 (15)
Xa 0.0

If the observation 1is structural response
acceleration, then the nonlinear discrete

observation equation (2) and equation of motion
(13) are given by

Yt=h(Xty,tk)=-2XaXaX2~X4 X, +VE, (16-a)

and transfer matrix is given by

M(tn;g(tk/tk—l)]
=[-X24) ~2XaX4) —2X2Xa, —2(sz3+X‘X4)] (16-b)

Simulated time history of the erthquake accel-
eration, o(t) and the observation time history
of a SDOF model are shown in Fig.3 and 4,
where the system parameters g=0.1 and

w o=7.07 (rad/sec) are employed.

The level of observational noise included in
time history of the SDOF model is assumed to be
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Fig.7. Identified Parameter g

6.4% and/or 20.2% of the structural response in
the ratio of standard deviation.

The initial conditions for this analysis are giv-
en in Table 1.

The results are shown in Figs.5,6,7 and 8. The
results give good estimations of parameters.
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Table 1. Initial Conditions (1)

Paremeter | X, X2 Xa Xa

X(to/ts) | 0.0 | 0.0 | 0.5 | 20.0

1000

P(to/to) | 1.0 | 1.0 | 100

Note : R=1.0¥10-2, Q=0.0, wW=1.2
Iteration number=3

4 Finite Element Fomulation

In this section shown is the general formulation
of the extended Kalman filter, which may
accommdate the finite element method.

Then, taking into account the stationarity of

system parameters, the state vector equa-
tion(1) is rewritten by
g(tkd-l/tk):i(tk/tk)"'WtK (17)

On the other hand, a finite element equation of
motion is given by

Mi+Cu+Ku=f(t) (18)

where u , U and i are respectively displace-
ment, velocity and acceleration response
vectors. f(t) is an input vector. M,C and K are
mass, damping and stiffness matrices respec-
tively.

The current identification problem is to
estimate the unknown system parameters based
on observation data. To make the problem
unique the equation of motion is rewritten, as
the response of system can be measured in time
of displacement, velocity and acceleration.

If the acceleration at finite numbers of nodal

points are observed, the equation (18) is re-
written by
=-M~' {Cu+Ku-f(t)) (19)

The observation vector of these accelerations
may be related with the acceleration vector in
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Table 2. Initial Conditions (2)

Paremeter X, Xz
X(to/te) 0.5 20.0
P({ta/ta) 100 1000

Note:R=1.0%¥10-2,0=0.0,W=1.2

Iteration number=2

Objecive function
noise=0.0%(§ =1.0%x10-4)
noisex0.2%( @ =1.0%10"2)

the following manner. The observation equa-
tion(2) is rewritten by
Ytr=ut,.+Vt, (20)
where Yt, is an observation vector of the t, th
samples, and Vt, is an obervation vector. with
eq.(18), equation (20) is rewritten by
Ytp=-M~' {CO+Ku-f(t)}+Vt,. (21)
It is indicated that the mass, damping and stiff-
ness matrices consist of system parameters and
in general M,C andK are nonlinear matrices of
£(t,./t,). Thus, i=-M~" {Cu+Ku~f(t)} means a
nonlinear function of K(ty/ty).

In general, equation (21) is expressed by
Yw=h(X)+v, (22)
The state vector equation (17) and the
observation vector equation (22) are the basic
equations in the identification of the state
vector X(t./ty) by the extended Kalman filter.
In this procedure, the transfer matrix
M(tk;i(tn/tk-,)) which stems from the
linearization of the nonlinear observation
vector equation (2) will be evaluated by the
influence coefficient method. This evaluation
may be carried out numerically by a finite
element method computer code outside of the
main flow .
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The influence coefficient equation is
represented by
Oh(X,) - hy (Xut+axy, wey)-hi (Xy) (23)
9 Xix X1k

where h,(X.) is the ith element of h {R(t./t)},
4%, « is a finite increment of X; tw. X, tw is the
jth element of K(tn/tx). e, is a vector whose jth
element is unity and other elements are zero.

In other words, the transfer matrix is
approximated by the right hand side of the
equation (23) in which h(X«+4x,. wej) and h(X,)
are obtained numerically by the finite element
method.

It should be advantageous that in the above
procedure the finite element method code is not
integrated into the Kalman filtering algorithm
and the outputs of the finite element method
code are called to the evaluation of eq (23). In



this way, without arrangement, we can use any
available finite element method code.

5 Numerical Example 2

Consider a linear single degree of freedom
system of shear type Fig.2, and the governing
equation of motion is equation (13). For the
system, it is assumed that § and w o are
constant with respect to time. Then, the state
vector of equation(l7) can be represented as
follows.

X, J - [ ﬁ ] (24)
Xz wo
If the observation is structural response accel-
eration, then the nonlinear discrete

observation equation (22) is given by
Y= =2x, xz‘:l‘xazu‘u;"vl (25)

Simulated time history of the earthquake
acceleation, 1i(t), and the observation time his-
toriy of a SDOF model are shown in Fig.3 and 4
respectively.

The initial conditions for this analysis are giv-
en in Table 2.

The level of observational noise included in
time history of a SDOF model is assumed to be
0.0% and/or 0.2% of thestructural response in
the ratio of standard deviation. The results are
shown in Figs.9,10,11 and 12, This procedure
gives good estimations of parameters. But in
the case of using simulated datum, which is
contaminated by measurment noise of 0.2%, this
procedure does not give good estimations of
system parameters.

6 Concluding Remarks

A Kalman filter - weighted local iteration
procedure and the general formulation of the
extended Kalman filter, which may accommdate
the finite element method in parameter identifi-
cation problems are presented and through
numerical examples using a linear single degree
of freedom pilot wmodel, the following
conclusions are drown;

(1) A weighted local iteration procedure of
Kalman filter with an objective function is
found to be effective for stable estimation of
state vector.

(2) Numerical analyses are carried out to show
the usefulness of this method in system param-
eters identification of the finite element method
model in dynamic problems.

In the future, this procedure will be extended
to accommdate the finite element method in
which data are heavily contaminated by
measurment noise.

Finally, this study is performed by the second
author, incorporated with theoretical sugges-
tion by the first author.
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