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ABSTRACT: Global health monitoring of a structure is approached by detecting any significant changes
in its stiffness distribution through continual updating of a structural model using vibration measurements.
A Bayesian probabilistic formulation is used to treat uncertainties which arise from measurement noise,
modeling errors, and an inherent nonuniqueness common in this inverse problem. '

INTRODUCTION

Increasing interest has been shown in using system
identification approaches to develop a global means
of structural health monitoring using vibration
measurements from a structure (Natke and Yao,
1988; Chen, 1988; Das, 1990). The basic idea is
to use dynamic test data to continually update the
stiffness distribution of a model of the structure, and
to use any observed local decrease in the stiffness
to indicate the location and severity of possible
damage. Even if the mass distribution is assumed to
be modeled accurately, the inverse problem of using
vibration data to determine the stiffness distribution
based on a prescribed class of structural models,
commonly leads to nonunique solutions. Additional
difficulties are caused by measurement noise in
the data, and because any mathematical model is
only an approximation of the dynamics of a real
structure. For these reasons, a reliable methodology
for global health monitoring of real structures has
not yet been demonstrated.

Beck and Katafygiotis (1991) have presented
a general Bayesian probabilistic methodology for
system identification applicable to both linear and
nonlinear models. The interest here is in using
this approach with linear models to detect changes
in stiffness in a structure which may be due to
damage.  This would be useful, for example,
if applied to small-amplitude ambient or forced
vibration data to continually monitor an off-shore
platform for possible fatigue damage caused by
cyclic wave loading, or, following a severe loading
event such as an earthquake, to use “before”
and “after” vibration data from a structure to
check for possible event-induced damage. If actual
recorded strong earthquake motions are used from
a building, care must be taken in interpreting
the results since, in addition to the expected

nonlinear behavior, past studies have shown that
substantial changes in stiffness occur during an
earthquake which are not related to structural
damage. These changes are possibly due to
such effects as temporary loss of stiffness from
loosened nonstructural components, micro-cracking
in concrete components, and softening in the
foundations (see, for example, Beck, 1978; Nisar,
Werner and Beck, 1992).

FORMULATION

A class of linear structural models, My,, with Ny
degrees of freedom, is chosen to model a structure.
Thus, the usual multi-degree-of-freedom classically-
damped linear model is used except that we allow
for the fact that the contributions of the higher
modes are usually negligible, so that the model
response at the i** degree of freedom corresponding
to the measured response y;(n) at discrete time n,
can be expressed as a superposition of N,, modal
contributions,

Nnm
am)=Y ¢ ) ; Na<Ns (1)

r=1

It is assumed that the mass matrix of the model
can be calculated sufficiently accurately from the
structural drawings. The uncertain damping of the
structure is modeled by uncertain damping ratios for
each contributing mode, ¢.,r = 1,..., Ny,. Finally,
the uncertain stiffness distribution is modeled by the
stiffness matrix :

Ng
K=Ko+ Y 6:K: )

=1
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where the uncertain nondimensional positive param-
eters 6;,i = 1,..., N, scale the stiffness contribu-
tions K; of each “substructure” and Kg accounts for
the stiffness contributions of those “substructures”
with accurately known stiffnesses. Typically, the K;
would come from a finite-element model of the struc-
ture.

To resolve the stiffness distribution to high spatial
resolution, one might think of choosing a 6; for
each of the bending, shear, axial and torsional
stiffness contributions of each element, or at least
one 6; for each strnr+---1 member. In a typical
case, however, the substructures must be chosen on
a coarser scale, otherwise the parameters become
“unidentifiable” from the available vibration data.
Local changes in stiffness in the structure are
therefore “smeared” over the whole substructure in
the model, reducing the sensitivity to damage and
implying that localization of damage can only be
done on the broader substructure scale. Despite
these shortcomings, a workable methodology can
serve as an important global tool to detect the
presence of damage and to direct attention to
the parts of the structure where the damage is
located. A simple visual inspection of the “flagged”
substructures, if any, could then be made, or
some local non-destructive evaluation technique
could be used to pinpoint the damage within the
substructure.

Now suppose that dynamic tests on a structure
have produced sampled inputs Z; y = {z(n)eRM1:
n = 1,2,...,N} and outputs Y; y = {g(n)eRN":
n = 1,2,...,N}, denoted collectively as the test
data Dy. The measured input may consist of
time histories of applied forces, or of earthquake-
induced accelerations at the structural supports.
The measured output is commonly the acceleration
time histories at a set of “measured DOF” which
is a subset of the DOF for the structural model
(so N, < Ng). It follows from the above that
the vector of uncertain model parameters which
must be determined from these dynamic data Dy
isag= [01102,"-’0Nu§1»§2)--~’§NM]T~

Beck and Katafygiotis (1991), following the ap-
proach originally formulated by Beck (1990), present
useful results valid for large N, corresponding to a
large number of data points in Dy, which is the
typical case for dynamic test data. The posterior
PDF (probability density function) which describes
the relative plausibility of the uncertain parameters,
based on data Dy, is then very peaked at some opti-
mal parameters, indicating that locally they are the
most probable values for the class of models My,.
In this case, if My, is system identifiable, then the
posterior PDF is given by the asymptotic approxi-
mation:

K
P(alDn, My, Pn) = Y wiGl(g; &y, Cn (&) (3)
k=1 N

where G(a;d,,Cn(8;)) is a multi-dimensional
Gaussian distribution with mean &, and covariance
matrix Cy(&,). Here,

_ 1 8Jn(a)

[CI-\;I (@k)]ij T 252 60.;3&,- (4)
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& = N, min ~(a) (6)

and the K optimal parameters g, are all the global
mimima of Jy, that is,

Jn (&) = min Jy(a) (7)
The weighting parameters in Eq. (3) are given by:

wh = i v = det[Cn (@) Vn(a) (9
L1 U

where m(a) denotes the prior PDF used to describe
the engineer’s judgement regarding the relative
plausibilities, before the data Dy are utilized, of
different models in My,. Eq. (3) can be used to
produce the updated predictive PDF for response
to further input (Beck and Katafygiotis, 1991),
and to calculate “damage probabilities” for each
substructure.

In Eq. (3), Pn denotes a class of probability
models giving the PDF of the output-error sequence
E, n which is the difference between the measured
response y_(n) and the corresponding model response
g(n; a) over the discrete times n = 1,2,...,N. The
particular choice of the class Py used to derive
the preceding results asserts that Ey y is a zero-
mean stationary Gaussian white-noise sequence with
covariance matrix o2Iy,, implying both temporal
and spatial statistical independence. This means
that the engineer’s uncertainty concerning the
value of the output error at a specified time and
location is not influenced by knowing the output
errors at other times, or other locations within
the structure. The output error is a combined
effect of measurement noise and modeling error,
but for modern instrumentation, the former is often
negligible compared to that of modeling error. Also,
the output-error method used here is applicable
even when the measured structural response does
not correspond to the complete state vector of the
model. This is important, since in practice this
restriction usually applies.
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SYSTEM AND MODEL IDENTIFIABILITY

The important problem of finding the set of all
optimal parameters is a difficult one, since it
involves finding all global minima of a non-convex
function. First, we define system identifiability
of the class of models My, to mean that either
there is a unique optimal structural model (global
system identifiability) or there is a finite number
K > 1 of optimal structural models (local system
identifiability). If Jy in Eq. (5) does not have
a finite number of global minima in the region
of parameter space of interest, the class is system
unidentifiable. In this case, the finite sums in Eq.
(3) and Eq. (8) must be replaced by infinite sums
or integrals, depending on whether the infinite set
of optimal parameters is countable or uncountable.

Now define two models in class My, as output-
equivalent if they give the same output under the
specified input Z; x. Let Sop:(&; Zy ) denote the
set of all parameters a* which give output-equivalent
models to an optimal model given by &, then it
is clear from Eq. (5) that each g* in this set is
also an optimal parameter. If S,5:(&;Z1,n) has
a finite number K (&) of optimal parameters in

a

the region of parameter space of interest, then &
is defined to be model identifiable (globally model
identifiable if K(&) = 1 and locally model identifiable
if K(&) > 1). On the other hand, if Sop:(&; Z1,n) is
an infinite set, then & is model unidentifiable. In
analysing model identifiability for models in My,,
we can use the result of Beck (1978) that the
modal damping factors of the modes contributing to
the output are globally model identifiable, and the
modal frequencies and modeshape components at
the “observed” degrees of freedom are also uniquely
specified by the model input and output. Therefore,
any nonuniqueness in the optimal parameters is due
to the stiffness parameters § because of missing
modes and missing modeshape components of the
contributing modes.

Beck and Katafygiotis (1991) present a new
algorithm to determine Sopt(d;2Z;,n) for the
class of linear models My,. The algorithm
methodically and efficiently searches the high-
dimensional parameter space by following a finite set
of one-dimensional curves corresponding to fixing
Ny — 1 of the frequencies given by the “target”
optimal model. This solves the model identifiability
problem in many cases for an optimal model
parameter obtained by applying a minimization
algorithm to Jy defined in Eq. (5). This may
not give the full set of optimal parameters required
in Eq. (3), however, since there may be other
optimal models which do not have exactly the same
response at the “observed” degrees of freedom, but
still give an equally good fit to the data, as measured
by Jy. Of course, in the theoretical case of no
measurement noise and no modeling error, system
and model identifiability are equivalent. At present,
the problem of fully resolving system identifiability
is unsolved for real data.

EXAMPLE APPLICATIONS

By integrating the damping out of Eq. (3) and
replacing the Gaussian distributions by delta
functions for large N, the posterior PDF of the
stiffness parameters § can be approximated by:

K
P(@IDN, My, Pr) = Yy wib(8—8,)  (9)
k=1

The weighting coefficients wy can be calculated from
Eq. (8) considering the particular case ¢ = §, but
Katafygiotis (1991) showed that Eq. (8) can be
replaced by the following:

Uk

we= = , v =m(8) 7M@) (10)
Lke1 Vk

where J(8,) = | v w(8,)| is the Jacobian of the

transformation § — w(f) calculated at § = Qk.

N

The term 7y(8,) reflects the contribution of the
prior PDF to the weighting of the k** optimal
model. Before using the data Dy, each 6; is assumed
to be independently distributed with a prior PDF
79, (6;). This distribution is chosen subjectively and
is selected to be of a convenient mathematical form
roughly consistent with the engineer’s judgement
regarding the relative plausibilities of the different
values of 6;.

The following distribution is suggested for damage
detection studies:

To, (813 X:)
_ 1 - (lna,‘ - /\‘2)2
= cl()\,)o—iexp[——T/\?———] ;0<8:;<1 (11)
(6: —1)°
= ca(As)exp[— =5 ;6
c2(Ai)exp| 200 6; >1

where the functions p(A), ¢y (A), c2(A) are given by:

W) = 21 - enf( 5 lexp ()

exp(%i) (12)

1
er(N) = Vo)
1

@) = V2ru(3)

The proposed prior PDF my,(6;) implies that the
most probable value is §; = 1 and there is an
equal probability of one half for §; being below or
above unity. Note that the K; in Eq. (2) can
always be chosen so that the most probable value
for each 6; is unity, by simply absorbing a factor
into each K;. The parameter ); is a confidence
parameter describing how peaked the distribution is
about 8; = 1; the more confident the engineer is in
this nominal value of 4;, the smaller the chosen value
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for ) should be. This prior PDF is plotted in Figure
1 for three choices of the confidence parameter A=
0.5,1.0,8.0; all curves are plotted with a maximum
of unity, although in applications they are correctly
normalized to have unit area.
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Figure 1. Scaled prior PDF for a stiffness parameter
6 for three different values of the confidence
parameter .
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In order to illustrate the procedure for damage
assessment for different cases of model identifiability,
two different structural models are considered using
numerically generated dynamic data: a six-story
planar shear building model, and a finite-element
model of a two-span bridge.

In both examples, it is assumed that the structure
is undamaged to start with, and the corresponding
structural model is “calibrated” using the measured
response at some observed degrees of freedom
for a known excitation. This can be done by
minimizing the measure-of-fit function Jy(a) in

Eq. (5) to find one optimal solution & = [8,¢]7

and then employing the proposed algorithm to
resolve the model jdentiﬁability of the optimal
stiffness parameters §, so that the full set of output-
equivalent optimal models is obtained. Next, it
is assumed that the structure has been damaged.
Utilizing a new set of measured input and output
data corresponding to the damaged structure, and
applying the same algorithms as in the undamaged
case, all optimal models for the damaged structure
are obtained. @ Each of the optimal solutions
found in either the undamaged or damaged case
is weighted in accordance to Eq. (10), where the
prior PDF 7y (8) is assumed to be constructed from
the proposed Eq. (11), controlled by a uniform
conﬁdence parameter A for each ;. Integrating
Eq. (9) leads to the cumulative marginal probability
dlstrlbutxons of each stiffness parameter 6; for
both the undamaged and damaged cases. Any
relative shift to the left of the cumulative marginal
probability distribution of a parameter §; between
the before and after damage cases, then indicates
possible damage within the *» substructure.

For the first example of the six-story shear
building, the uniform mass distribution was
assumed known and six stiffness parameters 6;,7 =
1,...,6 were chosen to parameterize the stiffness.
dlstnbutlon, with the ¢** interstory stiffness being
k; = 6:ko, where ko is a chosen nominal interstory
stiffness.  The undamaged case was taken to
be a uniform stiffness distribution, that is, § =
(1.0,1.0,...,1.0]7 , while the damaged case had the
first mterstory stiffness reduced to 70% of its original
value and the stiffnesses of the remaining stories
left unchanged, that is, § = [0.7,1.0,1.0,...,1.0]7.
Assuming a “minimal” noise-free data case where
only excitation at the base and the corresponding
response at the roof is measured, eight different
optimal solutions were found in the undamaged case
(see Table 1a), while twelve optimal solutions were
found in the damaged case (see Table 1b). The last
three columns of these Tables display the weighting
coefficients of each optimal solution for three choices
of the confidence parameter A = 8.0, 1.0,0.5. Notice
that, as expected, as the chosen value of A becomes
smaller, the weighting of the optimal solutions
closest to the “a priori” most probable uniform
stiffness distribution becomes larger. Figure 2
displays the cumulative marginal distributions for
just two of the parameters §, and 6, for both
the undamaged and damaged cases and for the
confidence parameter value A = 0.5. Notice
that in the case of 6;, the curve corresponding
to the damaged case has shifted to the left of
the curve corresponding to the undamaged case,
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Figure 2. Cumulative marginal probability dis-

tributions of the parameters 8, and 6,, scaling
the first and second interstory stiffnesses, for the
undamaged and damaged six-story shear building.
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Figure 3. Three-d.imensional curve ¢ comprised of all solutions # corresponding to models having the same
first two frequencies w; and w; as the damaged case § = [0.7,1.0,1.0]T for the bridge model.

Table 1. “Output-equivalent” stiffness distributions for the six-story shear building. The weighting
coefficient wy (%) corresponding to each optimal solution is shown for three different values of the confidence
parameter A of the prior distribution. (a) Undamaged building. (b) Damaged building.

No. 01 62 b3 b4 bs b we(%) | we(%) wi (%)

A =8, A=1 A=.5

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 41.44 67.84 93.67
2 1.5848 0.6963 1.2875 0.7574 1.1766 0.7898 -18.06 16.32 5.40
3 1.9970 0.7980 0.7095 1.3848 0.7113 0.8980 3.78 1.67 0.11
4 2.0000 1.0000 1.0000 0.5000 1.0000 1.0000 18.38 8.59 0.60
5 2.0932 1.0476 0.7240 0.7374 0.6705 1.2738 11.79 4.44 0.20
6 2.2911 0.6304 0.9321 1.1774 0.9515 0.6631 3.16 0.76 0.01
7 2.4913 0.8777 0.6514 1.1106 0.6672 0.9475 2.34 0.33 0.00
8 2.8252 0.6753 0.8826 0.9021 0.8753 0.7520 1.04 0.05 0.00

(2)

No. 6, 6, s ‘A fs 6 wi(%) wi (%) we (%)
A =8. A=1. A=.5

1 0.7000 1.0000 1.0000 1.0000 1.0000 1.0000 16.92 45.50 74.68
2 0.9325 0.9872 0.7847 0.7581 0.8500 1.5039 13.72 27.95 24.33
3 1.6241 0.5339 1.4416 0.6390 1.1820 0.7418 2.32 2.53 0.45
4 1.7669 0.8066 0.6781 0.7085 0.6174 1.6560 2.96 2.30 0.20
5 2.0000 1.0000 1.0000 0.3500 1.0000 1.0000 747 4.50 0.18
6 2.2450 0.9373 0.9252 0.3807 0.7915 1.1929 28.28 9.86 0.12
7 2.2703 0.6203 0.6213 1.4750 0.6120 0.8863 0.39 0.12 0.00
8 2.3524 0.9004 0.9018 0.3942 0.7688 1.2087 26.66 7.09 0.05
9 2.4858 0.4789 0.9286 1.2143 0.9161 0.5692 0.43 0.08 0.00
10 2.6908 0.7835 0.6083 0.7301 0.5692 1.3136 0.61 0.06 0.00
11 2.9212 0.6469 0.5690 1.1304 0.6005 0.9157 0.15 0.01 0.00
12 3.1107 0.5047 0.8921 0.8880 0.8398 0.6702 0.10 0.00 0.00

(b)

implying that the first story has most probably been ~ The probability associated with different degrees of
damaged. This is not so in the case of 62, however, damage can also be established; for example the
implying that the second story was not damaged. probability that the stiffness of the first floor is
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below 60% of its original value is 0%, while the
probability it is below 80% of its -original value is
75%.

In the second example of the two-span bridge,
a simplified finite-element model was employed.
The deck was modeled using eight identical three-
dimensional beam elements, but with the stiffnesses
of the elements of the left and right span scaled by
two independent parameters 8; and 8. The bridge
was assumed to be supported at its midlength by
a pier, modeled by a single three-dimensional beam
element with stiffness scaled by a third independent
parameter f3. The stiffness of the supporting soil
at the abutments and at the base of the pier was
modeled using translational and rotational springs
with prescribed spring constants. The lumped
masses at the translational degrees of freedom of the
deck were uniformly distributed and were assumed
known. The undamaged case was taken to be
a uniform distribution § = [1.0,1.0,1.0T. A

“minimal” data case was assumed, consisting of;
the measured vertical and transverse excitation of

the bridge near the abutments and at the base of
the pier, along with the corresponding “measured”
vertical and transverse response at the midlength
of the left span. In this case, noise was assumed
present so that only the first three modes made a
detectable contribution to the observed response.
Calibration of the undamaged model from the data,
including examining model identifiability, led to a
globally unique solution § = [1.0,1.0,1.0]T. In the
damaged case, the stiffness of the left span was taken
as 70% of its original value, while the stiffness of the
right span and the pier remained unchanged, that
is, § = [0.7,1.0,1.0]7. Calibration of this damaged
structure, including examining model identifiability,
led to two "symmetric” optimal solutions § =
(0.7,1.0,1.0]T and § = [1.0,0.7,1.0]F. If we assume
that the output was also measured at the midlength

of the right span, the second solution is eliminated,

resulting in a globally identifiable solution.

Suppose now that the response is again measured
at only one location, but the noise level is larger so
that only two modes (the fundamental vertical and
transverse modes) make a detectable contribution
to the observed response. The stiffness parameters
then become unidentifiable, since there exists an
infinite number of optimal solutions represented by
the three-dimensional curve ¢ displayed in Figure
3. Additional research is necessary to determine the
weighting of each optimal solution along this curve.
If measurements at one additional location were
available, then global identifiability would occur.
Also, as illustrated in Figure 3, when the frequency
of the third mode (the second vertical mode) is
assumed known, there are only two points on curve ¢
with the correct third mode frequency, leading to the
two locally identifiable optimal solutions mentioned
earlier.

CONCLUSIONS

This paper presents a probabilistic methodology for
structural health monitoring and then focuses on
the issue of identifiability. Asymptotic expressions
are given for the posterior PDF of the mode]
parameters which can be used to compute “damage
probabilities” for each substructure, even when
there is nonuniqueness in the optimal model
parameters determined from dynamic test data, as
shown for the case of local system identifiabilty.
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