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Random response of hysteretic systems with viscous damping to white excitations

Y. Matsushima
University of Tsukuba, Japan

ABSTRACT: Thg nonlinear‘random response of the single-degree-of-freedom system having the
elasto-plastic hysteretic restoring force together with the viscous damping is presented.

The Gaussian white noise is assumed as the ground acceleration.

Two types of damping where

the coefficient of viscousity is taken proportional to the elastic stiffness and to the

instantaneous stiffness are dealt with.

The analysis aims at finding the approximate solu-

tions for the expectation and the variance of displacement, velocity, ductility factor,

cumulative ductility factor and damping energy.
with the digital estimates in most cases.

1. INTROCUTION

The nonlinear random response of the undamped
single-degree-of-freedom system with bilinear
hysteretic characteristic was analysed by
Matsushima(1990). The system dealt with
herein is identical with that in his analysis
except that it has the dashpot where the
damping force is in proportion to the
velocity. Two types of damping where the
coefficient of viscousity is taken pro-
portional to the elastic stiffness and to the
instantaneous stiffness are assumed. The
fundamental idea of the analysis is same as
in the undamped case. The displacement is
decomposed into two components ---the shift
of the center of oscillation and the defor-
mation about its displaced center. The former
is caused by the yield excursion which has
the random positive or negative magnitude and
regarded as the diffusion process. The theory
of the one-dimensional random walk is
therefore available for its evaluation. The
latter is estimated by taking account of the
equivalent natural frequency of the oscillat-
ing portion together with the concept of
energy balance. The analysis aims at finding
the approximate solutions for the important
response quantities which are needed for the
seismic design of structures. The digital
simulation is performed in order to verify
the accuracy of approximate solutions. The
effects of magnitude and type of damping on
responses are examined.

2. INPUT-OUTPUT SYSTEM

The structure is idealized by the mass-
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The solutions are compared and well agree

dashpot-spring system having single degree
of freedom. Two types of damping where the
viscousity is taken proportional to the
elastic stiffness and to the instantaneous
stiffness are dealt with. The viscous damping
coefficient ¢ is represented by (2h/wa)ke
=2hwem in the former case, where h is the
damping ratio, ke(=we?m) is the elastic
stiffness, we is the natural angular
frequency in the elastic region and m is the
mass. This case is simply referred to as the
linear damping hereafter. In the latter case
¢ is represented by (2h/w ¢)k., where k. is
the instantaneous stiffness. This case is
referred to as the nonlinear damping.

The system rested on the ground is suddenly
subjected to the Gaussian white noise which
is taken as the ground acceleration. The

equation of motion is given by

X+2hw x+£(x,x)=-N(t), (1
where x is the displacement of the system and
- means the derivative with respect to time t.
N(t) denotes the stationary white noise having
zero mean and the constant spectral density

Se. f(x,x) represents a restoring force
function which has the bilinear hysteretic
characteristic as illustrated in Fig.l. The
perfect plastic flow takes place at the yield
acceleration a (=wg?A ), where A is the
yield displacement. w. is always we in the
case of linear damping. . is either wa or
0 in the case of nonlinear damping, depending
on two slope angles in the hysteresis.
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Fig.l Bilinear hysteresis with zero plastic
stiffness
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3. TIME FOR RESPONSE TO ARRIVE AT ELASTIC
LIMIT

The initial conditions of Bq.(l) are x=x=0
when t=0. In the nonstationary response, the
system behaves elastically in the early stage.
The expected time for the response to arrive
at the elastic limit, which is denoted by te,
is approximately estimated in the following:

The expectation of the maximum absolute
elastic displacement is given by

|7 lnax=ac -

KZ)

where #» designates x/A . The symbol bar
and o mean the expectation and the standard

deviation. The value of a becomes in an
approximate sense

a=J2 f(h7), (3)
where

f(ht )=/0.424+In(dm hT +1.78). (4)

7 denotes the time normalized by the natural
period of the system To. The function given
by Eq.(4) was proposed by Rosenblueth et al.
(1962) as the ratio of the peak factor of
damped response to that of undamped one.

o - is approximately expressed by

Tn* «/Ez_hi (1

where £ = weSe/a?. Ta(=te/Te) is obtained
as the time which satisfies ac v=1' The

_e—47zhr), (5)

repetition of calculation is needed to get the
solution.

4. RESPONSE IN ELASTO-PLASTIC REGION

The system goes into the plastic region when

t is greater than ts. The energy supplied to
the system soon balances the energy dissipated
by the viscous damping and the hysteresis.

The displacement, however, never arrives at
the stationary stage. It is approximately
decomposed into two components as
X=Xc tXa (6)
where x. and xe represent the shift of the
center of oscillation and the deformation
about its displaced center. x. has the very
low frequency, whereas Xe has the equivalent
angular frequency w. which is independent of
time. The energy driven to the system is
consumed by the viscous damping and by the
hysteresis loop which is related to xeo.

The oscillating component about the center
of hysteresis loop, xe, is approximately
sinusoidal with the expected equivalent
angular frequency w.. The energy balance
during the equivalent period Te(=27/w.)
gives

27
W e

27
W e

=7 Se y (7)

).(pla“’Zhwav)‘(

in the case of linear damping. xr: denotes
the expectation of cumulative plastic defor-
mation per T.. The plastic deformation means
herein the deformation which excurses on the
lines f=% a . The cumulative plastic defor-
mation is defined by the sum of the absolute
values of plastic deformation.

x is approximately equal to Xxo as found from

Eq.(6), since x. is much less than Xe. Xe iS

assumed to vibrate sinusoidally with the

amplitude w.(xs/4+A ). Supposed that the
hysteresis loop is symmetric about its center
and that the slope of its diagonal corresponds
to w.?, then

.. _4ba
We = T
Xp t4A

(8)

Equation (8) is rewritten in the nondimenional
form by introducing B(=w./wae) and

A (=x./4) as

4 (9)
A, t4

B?=

It is possible to write the variance of X as

- we2 )—(Pl 2
i ez (Tgo tA) (10)
where ag is estimated from
aa-‘ﬁf(h’[a), (11)

considering the continuety of equation at
the time Tao.
Substituting V. given by Eq.(10) into Eq.(7)
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and expressing all quantities in the
nondimensional forms, one gets

1= 2 (mpre- . (12)

A, and B are obtained by solving Eqs.(9) and
(12) simultaneously. The repetition of
calculation is needed to get the solutions.

The ratio of the coefficient of linear
damping to that of nonlinear one is
we?/we?(=B2) on the average. hB? is used,
therefore, instead of h appearing in Eq.(12)
in the nonlinear damping case in the approxi-
mate sense. It is found from the numerical
calculation that B does not depend so much
on h and on the type of damping.

Equation (10) is rewritten by the aid of
BEq.(9) together with the introduction of

7(=x/(waA)) in the following nondimen-
sional form:

1
'y BT (13)

Incidentally Eq.(12) can be written as

_E_g__v.),
7

47h
Con

B (14)

X\-_-
by using Eq.(13). This expression shows that
the system is always in the elasto-plastic
region when 7' (=7T-74)>0, since Eq.(5)
indicates that Vb <7 & /(2h) when the systenm

is on the elastic limit where T'=0 and B=I.
The hysteretic damping can be replaced by
the equivalent viscous damping as

2
(Ue

ip.a=2h,_.w,v)~( , (15)

where h. iIs the equivalent damping ratio.
The reduction of Eq.(15) to the nondimensional
form leads to

2p27
h, = 20°B8%R, (18)
4
This expression is used hereafter in the
estimation of peak factor p.

5. CUMULATIVE DUCTILITY FACTOR AND DAMPING
ENERGY

The expectation of cumulative plastic
deformation x,, when t' 20, becomes

W e
2 an

)_(a =Xp t'

The nondimensional form of Eq.(17) is given by

A=A,871", (18)
where A (=x./A) is referred to as the
cumulative ductility factor.

The expectation of nondimensional expression
of the viscously dissipated energy D, which
is defined by & =D/(a A ), is equal to the
expectation of nondimensional total energy ¢,
which is the total energy divided by a A,

subtracted by A . Since €=27w2& 7', there
is obtained

S=(2m2&-1,8)T". (19)
This is rewritten by the aid of Egs.(12) and
(13) as

Sd=4mht Vﬁ' Fzm
The ratio of hysteretically dissipated energy

to the total energy becomes from Egs.(18)
and (20)

X 1
= , (21)
T .5 4 hV -
A+d 1+ — 7
A

which is independent of T'. hpBg?2 is
substituted for h in Eqs.(20) and (21) in the
case of nonlinear damping.

Supposed that the velocity response is
sinusoidal with the amplitude A and the
angular frequency w., the expectation and
the mean square value of damping energy per
half period Dy are, respectively,

(mhwa/we)A? and (Thwe/w.)?A*.
Therefore the variance of Dy is equal to

(mhwe/w.)?(A*-42%). Under the assumption
that the amplitude A is the random variable
having the Rayleigh probability density
function, the following relationship holds:

_ _ 2 2
432 = . .2 = .2
At-A* =80 . (ZGX ) 4o 2. (22)

If it is possible to assume that the damping
energies per half period are mutually
independent by analogy with the fact that the
cumulative plastic deformation with positive
velocity is independent of that of negative
velocity, the variance of damping energy
during the time t' is approximately given by
2 2

Vo= AEEOa ey (23)

The nondimensional expression of Eq.(23) is

8 fhiT' v o

§° B 7 (24)
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hB? is again used instead of h in Eq.(24) in
the nonlinear damping case.

It is simply assumed that A is perfectly
correlated to &, since they seem to be
strongly correlated to each other such that

both A and & increase at the same time as
the random variable & increases. That is
o =0 ,+0 (25)

& A [

The variance of & is given by Matsushima

(1990) as

- 2 RN
V£-471: &T Vﬂ. (26)
The application of Egs.(24) and (26) to
Eq.(25) gives

- b . 2 .
0‘1-2”,/2‘ (‘/E—hcn\/;)dv (27)

in the linear damping case. Here hB82? is
substituted for h in the nonlinear damping
case.

6. DISPLACEMENT AND DUCTILITY FACTOR

Under the assumption that #». and 7. are
statistically independent, the variance of
7 1is given by Matsushima (1990) as

V.

v =V v =V _7
7e A E 2

i (28)

In the derivation of Eq.(28), 7% . is regarded
as the random walk having zero mean and
variance VA“ Applying Eq.(27) to Eq.(28),

one gets

Vﬁ={47r2’r'(ﬁ—-ho'7}\/—%)2+ 31_2 }Vﬂ
(29)

in the linear damping case. Here hB? is
substituted for h in the nonlinear damping
case.

In the similar manner, the expectation of
ductility factor u« which is defined by
[xlmax/A approximately becomes

T iy — .z P2 y.
ﬂ'%")clmax"‘iﬂalmax" 2 Vl+ ﬁz vﬂi

(30)

where the suffix max means the maximum value.
p is the "peak factor”, which is estimated
from

p=/2 f(ht+Bh.T"'), (31)

in the linear damping case, considering the
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continuety of equation at the time T, and

the increase of apparent damping after Ta,.

he is evaluated from Eq.(16). hAB? is again
substituted for h in the nonlinear damping
case. Application of Eq.(27) to Eq.(30) leads

to the following concrete expression for
in the linear damping case:

._= . - . 2 2 2 .
L /21r3‘r (V€ ho'”/——g )+ ~L—32 c,
(32)

The variance of x is approximately written
by Matsushima (1990) as

v o=V +V =~
M |77e'max ]7)G|mnx V[’)clmax

=(2c- 5’5 v (33)

2
where c is Catalan's constant which nearly
equals 0.9160.

T.VERIFICATION BY DIGITAL SIMULATION

The digital simulation is performed in order

to verify appoximate solutions obtained above.
Three hundred white noise samples are
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generated. The nonstationary nonlinear
responses are numerically computed. The
statistical treatment is made on the results.
The values of & are taken as 0.025, 0.05,
0.075 and 0.1. h is assumed as 0, 0.01, 0.02,
0.05 and 0.10.

o M T relations with a parameter h are

displayed in Figs.2 and 3 for linear and
nonlinear damping cases. The solid lines
stand for approximate solutions for five
different damping ratios. The points
connected by fine lines show the simulation
estimates. & 1is fixed on 0.05 in these
examples. This value corresponds to the
ratio of the intensity of quite strong ground
motion to the strength of typical low-rise
building. For example, let

Se=200~ 300 cm?-s"?, T=0.3~0.5 s and
a =300 cm-s~2, then & turns out to be

o (200~300) _ .
€= G 3~0.85) X = aoge  008~0.07

The value 0.05 is exclusively taken for £ in
the figures shown hereafter as the represen-
tative. The solid lines agree well with
associated points. The type of damping does
not affect o » so much.

1 — 7 relations are shown in Figs. 4 and §
in the same manner as in the previous figures.
The degrees of agreement between the both

o
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estimates are satisfactory. o 1 for the
linear damping case only is depicted in Fig.6.

Figures 7 and 8 indicate & — T relations.

T 5 for the linear damping case is shown in

Fig.9. The solutions are in good agreement
with digital estimates in these figures.
o . 7 relations for the linear damping

case are shown in Fig.10. Figures 11 and 12

display u — T relations. ¢ u for the linear

damping case is shown in Fig.13. In any cases
the degrees of agreement between the both
estimates are acceptable from the practical
point of view.

It is found from the figures obtained that
responses are affected greatly by the magni-
tude of the damping ratio, whereas slightly
by the types of viscous damping in most cases.

8. CONCLUSIONS

The nonlinear random response of the single-
degree-of-freedom system having the elasto-
plastic hysteretic restoring force together
with the viscous damping is presented. The
Gaussian white noise is assumed as the ground
acceleration. Two types of damping where the
coefficient of viscousity is taken propor-
tional to the elastic stiffness and to the
instantaneous stiffness are dealt with. The
approximate solutions for the expectation and
the variance of displacement, velocity,
ductility factor, cumulative ductility factor
and damping energy are derived on the basis
of theoretical investigation. The solutions
are compared and well agree with the digital
estimates in most cases. The responses are,
in general, affected greatly by the magnitude
of the damping ratio, whereas slightly by the
type of viscous damping.
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