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Eliminating apparent limitations in modal combination

J.Visquez
The Catholic University of Chile. Santiago, Chile

ABSTRACT: Spectral Modal Superposition is hampered in its use by an apparent inability to provide information needed in
design, which in static or time-history analyses is ordinarily obtained from equilibrium or compatibility. It is shown that this
inability can be completely removed. A formula for obtaining spectral estimates of linear combinations of two basic response
variables, is presented. The estimates provided for the combinational responses have the same level of quality as the standard
estimates of the basic variables. The formula introduces an important cross-estimator as the only additional quantity needed
to remove the said inability, at post-processor stage. The formula s first applied to the problems of determining if a member
is in single or double curvature. It is also used in establishing a design criterion for cases where the requirements are expressed
through a nonlinear interaction relationship. Examples showing the significance of the latter criterion, are also presented.

1 INTRODUCTION

Spectral modal superposition, when used together with a
design spectra that appropriately describes the local seismicity
of the site, is the most suitable present day design procedure
for a vast majority of structures. However, the use of this
technique is met by the problem of an apparent inability to
provide the information required by certain design provisions,
namely, those involving combination of end forces, and very
specifically, interaction equations.

Actually, such a recent code as the 1988 Recommended
Lateral Force Requirements, of the Structural Engineers
Association of California (1988), in the commentary to
Section 1F.5.b., states: "Modal combinations present several
important problems in the interpretation of results. First, all
computed terms are positive. Second, the value associated
with each term may correspond to a different point in time.
Thus member and joint equilibrium cannot be checked;
moments, shears, and deformations at points between the
nodes in the model cannot be directly calculated. The
designer needs to consider these conditions when using the
terms, and should assign signs to the individual terms to
assure that the results are conservative. An examination of
individual modes may be useful in those assessments. Some
code provisions require that the designer know if a member
is in single or double curvature, and the predominant mode
response could be used to determine this condition.”

However, most of these problems are largely inexistent.
That the "terms” - as moments, shears and deformations are
generically referred to in the code - are all calculated as
absolute values is certainly a characteristic of the spectral
technique. But such a characteristic should not be understood
as meaning that the terms are to be regarded as essentially

positive quantities, rather, that as estimations of response
variables reversible in nature, they should be taken both with
plus and minus sign. Of course, the equations of statics and
those of geometrical deformation do not apply to spectral
estimates. But this does in no way imply that response
quantities not ordinarily obtained explicitly from analysis
programs have, of necessity, a lack of estimates of the same
level of accuracy as those of the member end forces.

On the contrary, the modal spectral superposition technique
is bound to yield an estimate for any response variable that
can be expressed as a linear combination of the structure’s
displacement degrees of freedom, and through them, as a
linear combination of the modal normal coordinates. Certain-
ly, there is no reason for a preferential status in one type of
response variable, for example the end moment of a certain
member, with respect to any other type of response, as for
instance the moment in a point in the span of the same
member. The relevant question is to decide beforehand
which information must be retrieved from the analysis in
order to have after its completion the capability to calculate
estimates of given combinational response variables that, of
course, in a static analysis would be computed directly from
equilibrium or compatibility considerations.

The second section of this paper deals with this point,
developing a general procedure by which an estimate of any
linear combination of two basic variables can be obtained
from their standard estimates and an additional "cross-
estimator", as the only supplementary information required
from the main analysis process. The third section addresses
the special problem of deciding if a flexural member is in
single or double curvature.

Interaction equations that are often included in code
provisions can be readily handled, except in cases when they
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involve a nonlinear relationship. When the interaction is
associated with a linear expression, the requirement is
equivalent to imposing a limit to a response variable that is a
weighted average of end forces. It can be readily estimated
through the procedures for combinational variables. A
generalized method for nonlinear interactions, based in the
property of convexity of the safe interaction region, typical of
ductile members, is presented in the fourth section of the
paper. The fifth section is devoted to an application example.

The problem here posed has in fact been addressed before,
pointedly by Cakiroglu (1987), and Gupta (1990). However,
the presentation in the work of both these authors is some-
what obscured by the fact that analysis of nonlinear interac-
tion under spectral superposition does not appear to be the
main point of interest in either study. Rather, the first one is
trying to find the most unfavorable direction of the seismic
excitation, while the second one is mainly concerned with the
effects of a multicomponent earthquake. The two methods are
in some way graphical, and they both lead to a safety
criterion based in that a certain ellipse is to remain within the
safe region. However, it is not easy to establish that the two
ellipses are in fact coincident. Actually, Gupta’s method can
be shown to be equivalent to the criterion here presented, and
a discussion thereof is included as the sixth section of the
present paper. The formulation of this graphical method is
rederived, so as to remove the here unrequired references to
multicomponent excitation, and to eliminate a distracting
definition of a certain “"equivalent modal response” that is
really unnecessary.

2 LINEAR COMBINATIONS OF VARIABLES

As it has already been stated, whether basic in the analysis
stage or not, any response variable can be expressed as a
weighted sum of the modal normal coordinates having the
form '

r@) = Er,'ci(t) 1)

The weighing factors affecting the normal coordinates are the
values that can be calculated for each response variable when
the structure is deformed in the given modal shape. It will be
assumed that the modal vector normalization has included the
corresponding spectral displacement ordinate for each shape,
so as to render a maximum of one for all the normal coordi-
nates. The spectral estimate of the response variable can then
be written as

R* = XXprr, @

where the modal coupling coefficients are those of the CQC
method (Wilson et. al., 1981) or those proposed by Der
Kiureghian (1981), or eventually, zeros and ones, as in the
SRSS method.

In order to establish the minimum information about a set
of two reference response variables that has to be retrieved

from the analysis process in order to retain capability of later
calculating an estimate of a response variable that is a linear
combination of the former two, such as

t=ar+ Ps ©)

the expression given by the direct application of the superpo-
sition formula (2)

T = ISp,, @

has to be appropriately expanded.

This expansion can be performed due to the fact that the
linear equation (3) is valid within the context of a geometri-
cally and statically compatible modal shape deformation,
ie.,
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which upon substitution into equation (4) leads to
T* = XXp(ar+ Bs)(ar+Bs) ©

Equation (6) can now be rewritten
T* = IXp oy, +

™
a(rs+rs)+pss))

so as to allow the derivation of the fundamental formula
T? = «?R*+2a BRS+P2S? ®

which includes the standard estimators of the basic response
variables

R* = X¥pry,

9
§* = LXps5, ®

and what will be called their cross-estimator, which due to the
necessary symmetry of the modal coupling coefficients, can
be written asymmetrically as

RS = TXp IS (10)
It is thus concluded that equation (8) solves the problem
posed, and that the cross-estimator of equation (10) is indeed
the only additional piece of information required to calculate
the estimator of any linear combination of the two reference
variables. A generalization to three or more basic variables
can be achieved through a clearly straightforward extension
of the procedure.

As a direct example, consider the calculation of the bending
moment at point X in the beam of Figure 1. The linear
expression in this case is
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(In

m, = -(1-Eym, + &m,

so that on application of the formula of equation (8), the
following result is obtained
M? = (1-82M° -

12)
201-8)EM M, +£*M,

Here, the notation derived from (9) and (10) is

M = EEp,fmdm‘v 13)
M; = TEpm,m,,

for the estimators of the end moments, and

MM, = XXpmm, (14)

for their cross-estimator.
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Figure 1. Flexural Member

3 CURVATURE PATTERN OF A MEMBER

Under static loading, or in a time history analysis, the
curvature pattern of a flexural member due to lateral defor-
mation can be established by comparing the signs of the two
end moments. However, such a test cannot be expressed
through a linear relationship. Actually, it is equivalent to
obtaining from equation (11) the point X for which the
bending moment is zero, and determining if it is located
within the end points of the beam or not. The position of that
point is given in terms of its dimensionless distance to end A
by equation (15). Of course, due to the inherent nonlinearity
of a ratio such as this expression, it is not possible to estimate

it directly by modal spectral superposition.

£ oo (15)

ma+mb

As an alternative, equation (12) can be analyzed to see if it
eventually yields a zero estimate for the moment at a certain
point X. However, in agreement with the fact that the
spectral estimate is supposed to assess the maximum value of
the corresponding variable, even in the cases where the
magnitudes are bound to be very small, it will seldom, if
ever, lead to an absolute zero.

On the other hand, considering that the expression given by
equation (12) is actually the square of the estimate of the
bending moment, and that the form adopted by the square of
the moment is parabolic, as is also shown in Figure 1, it can
be argued that double curvature should be associated with the
positioning of a minimum of the second degree polynomial

M, = (M+M3+2M M-

— (16)
UMM MYE+M?

in the range spanning between the end points of the beam.
From this expression, obtained by rearrangement of equation
(12), it can be seen that the polynomial always has a mini-
mum, since the coefficient of the quadratic term can be
shown to be always positive. Indeed, by direct application of
the basic equation (8), the coefficient is found to be the square
of the estimate of the sum

ma#b = ma + mb (17)
Hence, the estimate of the bending moment has a minimum
value, and it is located at a point X given by

,
m=_M_47’;__‘L~M_b 18)

a+b

Consequently, the criterion to determine whether double
curvature occurs is associated to establishing when this
expression evaluates to a quantity that is both greater than
Zero, i.e.,

M+ MM, >0 19

and less than one, i.e.,
M+ MM, < M: + M, + 24 M, 20

This second condition can be reordered leading to equation
(21). This simpler expression also reflects the symmetry that
the results should have. Furthermore, it is interesting to note
that the corresponding minimum value of equation (16) is
given by (22). Its value is the estimate of the smallest
possible bending moment, and obviously it can be zero only
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in the improbable case in which the numerator of the expres-
sion is itself zero.

M3+ 3, > 0 @n
2242 ST
Mz _ MM - Mde 22)

M

a+b

4 NONLINEAR INTERACTION PROVISIONS

Interaction curves or surfaces can be interpreted as the
boundary of the region of admissible values of the design
variables. For instance, in Figure 2 the interaction curve for
a reinforced concrete column is schematically shown as the
solid line, marking the boundary of the region where allow-
able combinations of axial force and positive bending moment
must be plotted. Of course, in symmetrical cross-sections,
the region for negative moments is an identical reflection of
the one shown. Furthermore, it is well known (Heyman,
1971) that for ductile materials and cross-sections, the
admissible or safe region is convex.

n

Figure 2. Interaction Curve as an Envelope

The interaction curve, as any other line, can be regarded as
the envelope of its own tangents, as is insinuated in the same
Figure 2. Henceforth, imposing safety with respect to each
and all of the tangents, interpreted as representative of a mode
of failure, is wholly equivalent to have the design variables
confined within the safe region. Since the safe region is
convex, there is no risk of conservatively chopping part of it
off when using the alternative procedure.

_ The individual tangent safety condition can be written as the
linear relationship of equation (23). In this expression, the
coefficients of the axial force and the bending moment are the
reciprocals of the corresponding intercepts as shown for
generic tangents in Figure 3.

pm + vn < 1 (23)

This suggests the definition of a linear combination of the
axial force and the bending moment as the new "safety"
variable

g =pm+vn (24)

that certainly has an estimate that can be calculated using
equations (8), (9) and (10). The resulting expressions are the
evaluation formula

Q? = p*M2+2uvMN+v2N? (25)
together with the definitions
M?* = Z¥p mm, 26)
N* = EXpnp,
and
MN = EEp‘.}npj @7

These relationships allow the calculation of the safety variable
for any tangent whose intercepts are known. From a practi-
cal point of view, the interaction curve can be approximated
through a discrete number of tangents, as shown in Figure 3,
and the evaluation of safety variables limited to those cases.
Again, given the convexity of the safe region, such an
approximation is conservative.
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Figure 3. Interaction Curve Tangent Approximation

Of course allowance must be made to consider the effect of
static forces. This can be achieved by directly reducing from
the safety condition associated to a given tangent, the capacity
required by the bending moment and the axial force originat-
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ed in static loading. The conditions implicit in both equations
(23) and (25) is then to be generalized to

Q=s1-pm,, - vn_, (28)

as the actual safety criterion with respect to a specific tangent
mode of failure.

5 SOME NUMERICAL APPLICATIONS

Analysis for a code design of a 17-story reinforced concrete
building gives (Hidalgo et al. ,1990) for a column in the ninth
story the following axial force and bending moment at its top
end

1. -324.1 [kN] 50.189 [KN-m]
2. 229.7 -17.455
3, 8.3 10.265

for each of the three modes most significant for the particular
member. The CQC coefficients for these three modes,
shown in matrix layout, are

1.000 0.064 0.004
0.064 1.000 0.010
0.004 0.010 1.000

indicating that the case is one of fairly negligible modal
coupling.

The formulas of equation (26) give the standard estimates
of the axial force and the bending moment as the values

385.1 [kN] 53.1 [KN-m]
while equation (27) renders
-1925. [kKN?-m]

as the corresponding cross-estimator.

The design using the combination of static loadings with the
standard earthquake estimates, considering a 0.25[m] square
cross-section, was performed for the following two static
loading cases

A. 600. [kN] 16.15 [kKN-m}
B. 900. 11.60

For comparison purposes, the static loadings were adapted so
as to have both in cases A and B the same reinforcement ratio
0f 0.06. Earthquake load was factored by 1.43. Case A was
controlled by the combination corresponding to the difference
between the static axial load and the earthquake load, while
case B was controlled by the sum of the axial loads. In both
cases the controlling bending moment was the sum of the
static and earthquake loadings.

Application of the criterion of equation (28) to the verifica-

tion of the design in case A shows that there is an over-
strength that can be accounted for by reducing the reinforce-
ment in 6.8 percent. The overstrength of the design in case
B is much slighter, so that the possible reduction in the
reinforcement would be a meager 3.5 percent.

The overstrength implicit in design using only the standard
estimators is indeed highly variable. For instance, if case B
is modified by suppressing the load factor of the earthquake
forces and increasing in magnitude the static forces so as to
attain a level C given by

C. 1066. [kN] 34.42 [kN-m]

S0 as to retain as design limit condition the same reinforce-
ment ratio, an overstrength of about 20 percent will be found.
Actually, under load condition C the reinforcement obtained
from the proposed design criterion is 0.05 rather than 0.06.

6 EQUIVALENCE TO GRAPHICAL METHOD

Gupta’s graphical method is based in the notion that through
the estimates of equation (2) the modal component response
variables define a metric space vector. As mentioned before,
an independent derivation of his findings is suitable to clarify
the discussion. For such purpose, it is convenient to rewrite
equation (2) as

R* = XXpr'r! (29)

showing the contravariant nature that must be attributed in
this context to the components of a response variable.
Consequently, the covariant component, that has to be written
as (Brillouin, 1964)

r, = Zp/ (30)

can be regarded as proportional to the set of normal coordi-
nates. This is recognized by comparing the equation express-
ing the norm (29) in terms of both covariant and contravariant
components, and the modal equation (1) evaluated at the time
when the response variable under consideration has its
maximum, i.e.,

R* =X rr! a1
R =ZE@)r!

Hence, any other response variable at the same instant of time
can be assumed to have a non-maximal value of
1
t) = =XXp ris! 32)
St) = ppy
and specifically, when the linear combinational variable of

equation (24) aftains its maximum value, given by equation
(25), the synchronous values of the basic variables of which
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it is a combination, should be estimated as

me) = M - W) )

n() = —é—(pﬁﬁ + vN?)

These equations can be regarded as parametric expressions of
the locus of the pairs of values of moment and force that
maximize any linear combination of them. It is easy to
eliminate simultaneously both parameters, since actually only
their ratio is relevant. Thus, the quadratic form

N?m2-2MNmn+M*n? = M*N*-MN® (34

is derived. The corresponding curve is an ellipse. Clearly,
the ellipse is inscribed within a rectangle with half-sides the
standard estimates of equation (26). The safety condition is
then expressed stating that the ellipse is to be entirely within
the safe region.

This graphical criterion is seen to be equivalent to the one
proposed in Section 4, when observing that from equations
(33), the linear combination

q(t) = pm(t) + vn(t,) (35)

can be written as

q@) = ZI?-(pZM2+2va—N+v2N2) (36)

The criterion of having each and all points of the ellipse
within the safe region is obviously equivalent to the one here
proposed, namely, through equation (28). Of course, the
ellipse has to be shifted through a displacement of its center
to the position representative of the static load.

The analytical procedure is of certainly easier to use. In the
graphical method, the ellipse may be drawn by finding its
axes, both in position and magnitude, from equation (34). In
such a case, attention must be paid to drawing scales used.
The curve can also be drawn point by point, as is insinuated
by Gupta, before proposing an approximation. The paramet-
ric equations (33) serve that purpose, and no equivalent
modal response, as the one defined by the author, is needed.

7 CONCLUSIONS

The supposed inability of the spectral modal superposition
technique to provide the information required by code
provisions is shown to be removable. The most important
tool for doing so is the formula derived that provides an
estimate of a response variable that is a linear combination of
two basic variables, the estimators of which, it is supposed,
are obtained during the main analysis process. This form-
ula’s estimates, that can render the information that in static
or time-history analyses is ordinarily obtained form equilibri-

um or small deformation geometry, are of the same lével of
quality as those of the basic variables. The only additional
information that is required for its use at the post-processor
stage is a cross-estimator that involves the modal components
of the two basic variables. The case of several basic variables
is not discussed, but it can easily be seen to be a direct
extension of the two variable problem.

The use of this formula in design problems that are not
directly linear in nature can also be achieved. Two such
cases were discussed. In the first one, a method for the
discrimination about the pattern of the curvature of a flexural
member was developed. In a second and more important
one, its use in establishing a criterion for nonlinear interaction
design requirements was achieved. Through this criterion,
overstrength that may be unavoidable when only the standard
estimators are considered, can be suppressed. This over-
strength, as is appreciated in the example presented, can vary
from a very minor level, to rather significant values that
should be considered for a reduction of costs. The interaction
problem analyzed was a particular one, but again, its applica-
tion to other cases is obviously identical.

The proposed criterion is found to be coincident with the
graphical one proposed by Gupta, but its use is thought to be
easier, particularly, as its coding into an algorithm is bound
to be quite straightforward.
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