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ABSTRACT : This paper deals with the characterization and the identification of non-linearities in the behaviour of
buildings under seismic motion. A non parametric representation of the system by Wiener series is used to quantify
the effect of non-linearities in the whole response. The non-linearities are characterized by using a modal analysis
technique within a moving time window. The time variation of the identified parameters allows to detect a ppssible
stiffness degradation. An attempt of identification of non linear models is then presented. Among the studied visco-
plasticity and damage models, the two models studied reproduce accurately the stiffness degradation phenomenon.

1 INTRODUCTION

During strong earthquakes, a building often exhibits a
dynamic behaviour whose model can no longer be
linear. After the San Fernando earthquake in 1971,
many buildings have been instrumented with
accelerometers to record their actual seismic motion.
Many building response data of good quality were
recovered during recent californian earthquakes by
C.S.M.I.P. ( Californian Strong Motion Instrumenta-
tion Program ) to study their true structural dynamic
behaviour. The object of this study concerns the
characterization and the identification of the non-
linear behaviour of two reinforced concrete buildings
instrumented by C.S.M.LP. :

- The Pacific Manor building (P.M.B) in Burbank
which is ten stories high and shear wall lateral
resistance system. It recorded the "Whittier Narrows"
earthquake of 10/1/1987 ( apax = 0.22g - ground- and
amax = 0.54g - structure-)

- The Imperial unty Services building (I.C.S.B)
which is six stories high with both shear walls and
moment resisting frame. It suffered severe structural
damage during the "Imperial Valley" earthquake of
10/15/1979 ( amax = 0.34g - ground- and ap,., = 0.45g
- structure-).

A previous research work in Afra, Argoul & Bard
(1990), Afra & Argoul (1990) and Bard, Afra &
Argoul (1992) has indicated that the response of these
buildings is markedly non-linear. So, several
techniques have been elaborated for the characteri-
zation and the identification of these non-linearities.
The first one uses a non-parametric identification
method based on Wiener series decomposition. It
allows to separate the linear part from the total roof
response of the buildings. The second technique uses a
linear system identification method presented in Afra,
Argoul & Bard (1990) applied to the building
responses, but with a moving time window. An
equivalent linear model made of a succession of linear
models on each time window is then obtained.

The other techniques presented consider the response
of the building roof as that of an oscillator, by low-
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pass filtering the signal to eliminate the contribution’
of higher frequencies, and to retain only the.
fundamental mode. Two characteristics of great
interest, the restoring force and the effective stiffness,
are then computed to characterize the encountered
non-linearities. A parametric identification method is
finally applied to try to identify the non-linear
response of these buildings. Three non-linear models
have been tested to check their ability to model the,
observed responses : the perfectly elastoplastic model,
the hardening elastoplastic model and the damage
model with deteriorating elastoplastic elements.

2 QUANTIFICATION OF NON LINEARITIES

The technique presented here permits to quantify the
non linear part in the whole response of the structure. |
It is based on the decomposition of the input-output
relation into Wiener series - see Schetzen (1980). .

Typically, the data used are the basement record X (1),
and the roof record x(t). The structure is then treated

as a "black box" : a S.I.S.O. - single input single -
output - model defined by its output located at the roof

level to a given input located at the base level.

Udwadia and Marmarelis (1976) showed that the

ouput x,(t) can be largely influenced by the feedback

due to reflections and modifications in the propagation

of the seismic wave in the building whose effect shall

not be considered in detail in this paper .

Wiener showed that the system response x,(t) to a

stationary Gaussian white noise input X, (t) can be
expanded as an infinite sum of integral terms as ;

x® = 3 Gylhy, Xg()] )
n=0

where the G, represent a set of functionals depending
on the excitation and on symmetric terms h, called
Wiener kernels which characterize entirely the studied
system.

Wiener shows that because of the orthogonality proper



-ty according to a statistical average E{.} resulting
from the gaussian property of the excitation signal, the
Wiener functionals Gy, can be computed by means of
cross-correlation techniques.

Our aim is only to isolate the linear part from the who-
le seismic response of the building. So, we limited our
work to the computation of the two first Wiener func-
tionals which represent the linear part of the response.
Gy is a constant equal to the average value of x; (t)

Golho,Xg 0] = ho=E {x,(1) _ @
G, may be seen as the response of a linear time
invariant system with the unit impulse response hy(t)

Gylhy g (0] = [ hy(1) %g (- 1)dr 3)
G, is computed, as previously mentionned, thanks to
cross-correlation between the input signal and the
output signal

hy () =5 @i 0 =5 E(x0K-0) @)
where P is the constant power spectral density

funcdon of the input signal X s ().

Two main difficulties are encountered for the
application of this technique to buildings. The first is
the computation of power spectral density function
(p-s.d.f.) P of the seismic excitation which is not a
constant for the real input signal. P is obviously not
constant over all frequencies but it is reasonable to say
that this signal is an approximation to broad-band
white process. To estimate the value of P, we propose
to minimize, in a least squares sense, the difference
between the measured response x(t) and the one given
by the sum of the two first terms G et G,.

The optimum value of P is then obtained

T T T
p= J’ £()dt / d(x,(t) £(9) dt — hy [ £ dt )

T
where 1) = [ @; (%, (t=1)dr and Tis the

length of the time interval of measurements.
The second difficulty is the numerical computation of
the inter-correlation function appearing in relation (4).

We used the unbiased estimate of the sample cross-
correlation function at lag numbers r € [1,m], m<N

N-r
N—l—r >, (DA %, (4D ©)
=T =l
where N is the number of points in the discretization
of the time intervals of the two signals.
Finally, this technique has been applied to the I.C.S.B

data. We find ho = Gg = 2.25 10°%. The p.s.d.f. of the
seismic signal estimated by relation (5) is equal to
P =859,4 . The "linear” response in displacement
Gy + G, of the Wiener model is estimated from data
measured on the time interval [0, 20sec]. It is drawn
in figure 1 in dotted line and compared to the global
response drawn in continuous line.

The normalized difference in a mean square sense
between the measured response and the "linear" one
obtained by Wiener approach is about 34%. That per-
mits to characterize the importance of non linearities

o) igx,(rm)
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displacement (cm)

time (s)
Figure 1. Comparison between the linear part of
the response (---) and measured one (—).

Table 1. Identified parameters for I.C.S.B.

Identification 0] g p dg vo E%
on

The global 3.94 0.159 131 030 -1.78 27
response

The linear part 4.06 0.116 0.943 0.092 -0.24 10

with regard to the global response.

We have then applied the linear identification method
presented in Afra, Argoul & Bard (1990) to the global
displacement and to the "linear" part, over the time
interval [0, 15sec). The results for the fundamental

mode ( frequency ®, damping ratio &, participation

factor p and the modal initial conditions in displa-
cement and velocity dy and v,) are given in Table 1.
We observe that the minimization error E is lower
when identification is made with the "linear" part -
10%- than with the non linear global response -27%-.

3 CHARACTERIZATION OF NON LINEARITIES

The wusual non-linearities occuring in the
accelerometric responses of buildings under strong
motion earthquakes are of two types : the geometric
non linearities when the terms of first order in the
relationship between strains and displacements are
insufficient to well reproduce the actual response of
the structure and the non-linearities of behaviour when
the constitutive law between stress and strain is no
longer linear. Only the last case will be studied here
and especially the phenomenon of the degradation of
stiffness which is very frequently encountered in the
dynamic behaviour of concrete work constructions.
For example, Iemura and Jennings (1974 ) showed that
for the Milikan Library building on the campus of the



California Institute of Technology during the San Fer-
nando earthquake of 9 February 1971, its fundamental
frequency decreased from 1 to 1.5 Hz previously
observed in pre-earthquake vibrations. That means that
during the earthquake, the building has lost 34% of its
initial rigidity.

3.1 Modal analysis on moving time window

The stiffness degradation is a non stationnary
phenomenon. This property of non stationnarity can be
emphasized by using the technique presented below
and which permits to characterize the time variation of
the structural model parameters. It is based on the
application of the linear system identification method
within a moving time window.

First, we briefly remember the main features of this
method. The dynamic behaviour is described by the
modal equations of a discretized system with N
degrees of freedom and with proportional viscous
damping. Thus we obtained a set of NxNy, uncoupled
equations ( Np is the number lower than N of the
vibration modes taken in the model) which can be
written as

Ri+2E @ x]+0r X =pl ¥, @)
in which wr and &; are the rth vibration frequency and
modal damping ratio, respectively.

p{ is the participation factor of the rh mode at

response point i, defined as:

(o) M) (1)

(0:)'TM] (6r)

where (¢, }is the i eigen mode and ¢j, its value at the
data point i. [M] represents the mass matrix and {1}

the column vector whose components are equal to 1.
X is the ground acceleration.

P = =0y

The modal initial conditions in displacement and velo-
city are: df = x{(tg) and V| = ] (to) which are usually

zero because the structure is initially at rest, but are

necessary for a moving time window analysis. The

displacement at point i is given by combining all the
Nm

modal contributions : x; = ), . If we have N, meas-

r=1

urement points, the model with viscous damping is
described by N(2+3Np) parameters written in vector
(1) : (o &,p;,dj, v[) withr=1,Npandi=1,N,
This method is based on the minimisation in a least-
squares sense of the difference, measured in frequency

or time domain, between a MDOF linear, planar and
time invariant model and the actual responses.

N, f2 "
E({y},f],f2)=K2ff IHei(f)'Hmi(('Y);f)I df (8)
i=1 f

N, B2 )
where K = (i;, rJ’ |Hei ® | df) - He; and Hyy; are
i=l f

respectively the measured response and the one given
by the model at point i and at frequency or time f.

This method has been applied to the two buildings
previously mentioned and the results are given in
table 2. The minimisation error, between the
displacement at the roof of the model and that,
recorded, is very important ( 30% for 1.C.S.B and 44%
for P.M.B). After the study of torsional motion for the
two studied buildings in Bard, Afra & Argoul (1992)
that shows the smallness of torsion ( the spectral ratio
of the roof torsional motion upon the average roof
relative transverse motion less than 20%), we conclu-
de that they have exhibited a non linear behaviour.

Table 2. Identified parameters from linear
identification.

Building [0 g p E%
P.M.B 11.89 0.048 -1.32 ‘44
1.CS.B 3.98 0.158 -1.35 30

The length of the time window must be chosen to be
very large as possible to estimate reliable parameters
of the equivalent linear models. In the other hand, it
must be very short as possible to ensure the linearity
and the property of stationary process assumed within
the time window. So, the time window length is
chosen roughly to be six times the vibration period (in
seconds) of the structure. We choose a length of 6 sec.
After every linear identification method, a sensitivity
analysis on the minimization criterion E previously
defined in relation 8, is performed to determine the
confidence interval for every identified parameters.

Figures 2-3 show for these buidings, the draw of the
successive values with the confidence interval of the
frequency and damping ratio identified within every
interval [1,6] , [6,12] , [12,18] , [18,24] , [24,30] . An
equivalent linear model made from a succession of
linear models on each time window is then obtained.

We observe first a strong variation of ® and & of the
identified equivalent linear model, secondly a differen-
ce of the behaviour of the two buildings. For P.M.B,
no specific non linear behaviour seems to stand out
and the draw of damping ratio is not given here
because it is not significant of a particular non linea-
rity; for 1.C.S.B, we notice an irreversible decrease in
time of the frequency. This decrease which illustrates
the phenomenon of degradation of rigidity will be
studied in more detail in the next section. The curves
of frequency and damping ratio have been then fitted
by polynomials. For I.C.S.B, the explicit form of the
time variation of the frequency and damping ratio on a
polynomial form of fourth degree are

o(t) = 9.575-1.198t+0.086t2-0.00253+2.6.10-5 t4

&(t) = 0.369—0.023t—0.0003t2+ 6.9E-05t3-1.4.10-6 t4
The comparison between the displacement given by
this model and the one recorded is given in figure 4.
The error E obtained on displacement is mainly
reduced from 30% with time invariant linear model to
11% with the time variant one for I.C.S.B and from
40% to 16% for P.M.B. This model allows a good fit
of the seismic data.
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Figure 4. Comparison between response of identified
model (---) and measured one (—).

3.2 Notions of restoring force and of effective stiffness

The linear identification technique previously
presented has been applied to 13 buildings in Afra &
Argoul (1990) and the results have shown that the
fundamental mode is strongly predominant in the
displacement measured at the top of the building. So,
we propose to work only on this roof response and to
model it by a non linear oscillator.

The restoring force is defined as the difference
between the excitation forces and the inertial forces; it
is opposed to the internal forces. For an oscillator, the
restoring force per unit of mass is expressed as
f(x,x)=pxx-x ()]
The presence of higher modes in the response strongly
disturbs the interpretation of non linear effects in the
study of the fundamental mode. So, to reduce their in-
fluence, the response is filtered by a low-pass filter.
The filtered restoring force is computed for the L.C.S.B
data. The acceleration spectrum at the roof shows that
the higher modes appear beyond 1.8 Hz that will be
the optimum cutting frequency of the filter.

Figure 5 gives the diagram of the ﬁltcrcd restoring for-
ce. We recall that the slope of the "major axis” of the
loop defined for every cycle described the evolution of
the stiffness of the structure and its area represents the
energy dissipated by the structure during the cycle. We
notice that the loops of hysteresis rotate around the
origin and the slope of the "major axis" of the loops
slants towards the right. It means that the value of the
restoring force taken at the maximum displacement
point decreases, therefore the rigidity of the structure
decreases. A way to describe this phenomenon is to
draw the time evolution of the effective stiffness.
The effective stiffness during a given vibration cycle is
defined by the ratio of the value of the restoring for-ce
taken at the absolute maximum displacement, upon the
absolute maximum displacement x,, for that cycle
f.

i = 5 = L) 10)
For a linear oscillator with viscous damping, the loop
during a cycle of vibration is an ellipse and ke is
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Figure 5. Filtered restoring force from I.C.S.B data.

constant and equal to the square of the pulsation
keff=m(2). In figure 6, k¢ versus x; is drawn for

1.C.S.B. longitudinal and transversal vibrations; we see
a quick decrease of the effective rigidity until the
maxi-mum of x; is reached, then nearly a stretch when
x; decreasing.

4 IDENTIFICATION OF THE NATURE OF
STIFFNESS DEGRADATION

After the study of simple models as the viscoplastic

erfect model, the hardening visco-plastic model, we
hold the damage model, proposed by Cifuentes & Iwan
(1989). This model is composed as shown in figure 7
of a succession in parallel of a linear spring, an elasto-
plastic element, a set of N deteriorating elements
which consist of 'breaking' elasto-plastic elements ard
a dash-pot. An elasto-plastic element is characterized
by a linear spring with stiffness kg, in series with a slip
element that allows a maximum force equal to ke, Xyepr
the ith 'breaking’ elasto-plastic element no longer con-
tributes to the restoring force when the absolute value

of displacement exceeds a value B x,, (see figure 8).
The coefficient B must be greater than 1; if it is equal
to 1, then the deteriorating element acts as a linear ele-

ment till the breaking and when B tends to infinity, the
deteriorating element acts as a elasto-plastic element.

When the number N of deteriorating elements has
been chosen, this model has 2N + 6 parameters to
identify. N can be reduced by making the following
assumptions as Cifuentes and Iwan did

1. B =2 ;

2. each deteriorating element absorbs the same

maximum energy D that implies that k; = D/ xf,l ;

3. the deteriorating elements are organized in ascen-
ding order of the displacements xy, which are chosen

equally spaced over the displacement range of interest.
It ensues that Xy, =(Xpax/N)i1 where Xp, is the

i
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maximum relative displacement experienced by the
structure.

Finally, D is estimated directly from the effective
stiffness diagram

D= (Ko—Kf)/z,x—l-g with Ky = ke+kq,+2 k;
1= yi 1=

N
and Ki=k. +kp Z k; where j represents the
i=j+1

number of deteriorating elements having reached the
failure threshold at the end of the seismic excitation.
Kp and Ky are respectively the effective rigidity of the
first and the last cycle of vibration and are estimated
from the diagram of effective stiffness.

The {y) vector of the model parameters has only five
components : {Y} = {p, k,, kep, Xyep? c}. Cifuentes &
Iwan (1989) propose to still reduce the number of pa-

rameters by estimating the participation factor p from
the dynamic analysis of the building during its concep-
tion. The three parameters k., kep and Xy, are then
identified by a one dimensional minimiza%on of the
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Table III Parameters identified of the damage model

P ke ke % c N  Xnax Gmax E%

120 792 638 113 055 10 237 241 27

difference between the restoring force given by the
model and that obtained from the earthquake records -
¢ being zero-. Then, by successive approximations (2
or 3), they try to approach the value of the parameter ¢
that gives the best fit for the low amplitude portion of
the response. We have used a one dimensional mini-
mization of the difference between the accelerations
given by the model and that measured on structure by

taking the five components of {Yy} as the unknowns of
the problem. This technique has been applied to the
1.C.S. B. data, we find : D = 52 cm?/s2 and the results

are given in Table IIl. We observe that the maximum
displacement d,, given by the identified model is
similar to X, . The damage model permits a good fit
of accelerometric data as shown in figure 9. The error
E on displacement of 27% is nevertheless greater than
this of 11% obtained with the time variant model.

CONCLUSIONS

The use of Wiener series decomposition allows to de-
tect and quantify the part of non linearities in the
seismic response of buildings. The results obtained
with modal analysis on moving time window show
that there is a consistent time variation of the funda-
mental frequency and of the modal damping ratio of
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Figure 9 Comparaison between response of damage
model (---) and measured one (—). '

the equivalent linear model during strong earthquakes.
This variation may be often interpreted as a degrada-
tion of the rigidity which can be corroborated by the
computation of the effective rigidity . It is found that
the time variant linear model provides an efficient
model for the degradation effect. At last, when we
limit our study to the first vibration mode, the damage
model gives a good and simple representation of the
stiffness degradation.
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