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Effect of torsional coupling on the stability of structures
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ABSTRACT: The influence of torsion on instability during seismic response is investigated using
a single story mono-symmetric structure. General expressions for the parameters of a single
degree of freedom characterization of the structure are developed and used to identify the
conditions where safety against instability may not be adequately assessed on the basis of a
planar idealization. It is found that the planar model leads to unconservative predictions of
instability when the failure mode involves rotation about an element. Although not exclusively,
this failure mode is encountered when one or more elements of the structure have overstrength
values significantly larger than the average for all the members. Some preliminary results on
the importance of the three dimensional failure mode for multistory structures are also

presented.

1 INTRODUCTION

The destabilizing effect of gravity on struc-
tures subjected to severe ground motion can
lead to catastrophic collapse. Methodology to
asses the safety factor against failure from
instability, for structures that can be
idealized as planar, has been recently pre-
sented by Bernal (1992). For structures with
significant plan eccentricities, however,
there is currently little information on how
to make this assessment in the context of
practical seismic design. This paper presents
results of an ongoing study whose fundamental
objectives are to identify the limits within
which safety against instability may be
evaluated on the basis of a planar idealiza-
tion and to develop methodology on how to
proceed when the two dimensional evaluation
proves to be inappropriate.

To identify the fundamental parameters
which affect the interaction between torsion-
al response and instability, a single degree
of freedom (SDOF) model, applicable to one
story mono-symmetric systems, is developed.
Observations on the expected influence of
torsion on instability are made by inspecting
the expressions that define the parameters of
the equivalent system.

The importance of the shape of the control-
ling mechanism in the ability of two dimen-
sional structures to undergo inelastic re-
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sponse without instability has been pointed
out by Takizawa and Jennings (1980) and has
been recently quantified by Bernal (1991).
Based on the results presented by these
authors, it is reasonable to expect that the
three dimensional shape of the failure mode
will be a key parameter when assessing insta-
bility in torsionally coupled multistory
buildings. Unfortunately, however, the mono-
symmetric one story structure does not capture
the complexity of the three dimensional
failure mode and can not be readily utilized
to explore its importance. Notwithstanding,
some preliminary results on the effect of the
failure mode, derived from the analysis of a
three story structure having one wall and two
frames, are presented and discussed in the
paper.

2 ONE STORY SYSTEM

A one story structure with eccentricity
between the center of mass and the center of
stiffness along the x-x axis 1is shown in
Figure 1. The eccentricity about the y-y axis
is taken as zero and, for simplicity, the
influence of elements parallel to the x-x
axis, as well as the ground motion component
in this direction are neglected; the number of
lateral force resisting elements parallel to
the y-y axis is assumed arbitrary. To simulate



the condition typically encountered in actual
buildings, the vertical load is assumed to be
transmitted to the foundation not only by the
lateral force resisting elements but rather
uniformly throughout the plan. The system
described has two degrees of freedom which
may be conveniently selected as the transla-
tion of the center of mass relative to the
ground, u, and the rotation of the deck, .
Neglecting damping, the equations of motion
can be written in incremental form as;

bu 10 Au
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where M is the mass of the deck, r is radius
of gyration about the center of mass, Kt is
the summation of the tangent stiffness of the
various members, Kr is the tangent rotational
stiffness about the center of mass, e is the
distance between the instantaneous center of
stiffness and the center of mass (positive
when the center of mass is to the right of
the center of stiffness), g is the accelera-
tion of gravity, H is the height, y is the
ground motion acceleration and the symbol A
is used to indicate increment.

Fig.l One story torsionally coupled system

Unless otherwise noted, the yield strength
of the various elements (whose hysteresis are
taken as elasto-plastic) are assigned based
on the elastic distribution of member forces
which results from the application of a
static lateral load at the center of mass;
this approach is consistent with the provi-
sions contained in the Uniform Building Code
(1990) and the NEHRP Recommendations (1988),
wherein dynamic amplification of the static
eccentricity is not considered when the
design is based on the equivalent lateral
force procedure. Accidental eccentricity is
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neglected, however, because the analyses do
not contemplate uncertainties in member
properties, nor include the rotational ground
motion component.

2.1 Single degree of freedom model

It is well known that the linear response of
the one story structure of Figure 1 is gov-
erned by three independent parameters which
are often selected as: the uncoupled transla-
tional period T, the ratio of uncoupled
translational to rotational period Q and the
ratio of the static eccentricity e, to the
radius of gyration, r. Attempts to character-
ize the inelastic response of the system in

‘terms of these three parameters, however, have

essentially been unsuccessful (Tso and Sadek
1985, Kan and Chopra 1981). The introduction
of an additional parameter computed as the
distance between the center of mass and the
location of the resultant of the full plastic
capacity of the structure (strength eccentric-
ity) (Gomez et al. 1985, Sadek and Tso 1989,
Goel and Chopra 1990, Bruneau and Mahin 1987)
has lead to improvements in some cases but the
inelastic response of systems with identical
elastic parameters and strength eccentricities
can still be quite different (Chandler and
Duan 1991). On the basis of the preceding
discussion, it is evident that a character-
ization of the torsionally coupled one story
structure should strive to account for the
actual arrangement of resisting elements. One
way to account for the actual distribution and
yet condense the system to a small number of
characterizing parameters is to tramnsform it
into an equivalent SDOF model. This approach
is also attractive because the available
information on dynamic instability of SDOF
systems can be directly utilized to explore
the behavior of the torsionally coupled
structure.

Reduction of the structure to a SDOF system
can be viewed in this case as the introduction
of a predefined relationship between the
displacement of the center of mass and the
angle of rotation. In general, the prescribed
relation can itself be specified as a function
of the amplitude of the displacement at the
center of mass. The basic assumption in the
reduction to a SDOF can be mathematically
expressed as;

1
I (2)

where £, is a predefined function. A conve-
nient approach for selecting f(,) is to assume
that it is given by the ratio of the incremen-



tal rotation to the incremental displacement
at the center of mass, obtained from a static
analysis where a lateral load is applied at a
predefined eccentricity and increased from
zero until the attainment of maximum
strength. Needless to say, the selection of
the location of the point of application of
the load plays a role in the computed effec-
tive resistance function. For any position,
however, the effective resistance is a multi-
linear curve having N-1 segments prior to the
attainment of maximum resistance, where N is
the number of lateral load resisting ele-
ments. The period of the equivalent SDOF
system (based on the initial slope of the
resistance curve) can be shown to be given

by;

To =T 3)
where,
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In equation (5) B is a factor which when
multiplied by the initial static eccentricity
gives the position of the applied load mea-
sured from the center of mass. Another param-
eter that is fundamental for predicting
instability in a SDOF system is the slope of
the effective restoring force for deforma-
tions beyond the attainment of maximum capac-
ity; this slope, when normalized by the
initial elastic slope is known as the stabil-
ity coefficient, 6. For the system considered
here it can be shown that the stability
coefficient is given by;

B, = Oy A? (6)

where 9§, is the stability coefficient of the
associated symmetric structure, which can be
computed from;
2
8 = —8& D)
4 w® H

Given that T, and 6, depend on the selected
value of B, it is of interest to examine how
this selection affects the overall predic-
tions of instability. This can be done by
using statistical expressions which have been
derived to predict the minimum strength to
prevent instability as a function of period,
effective stability coefficient and key
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ground motion parameters. For elasto-plastic
systems, the minimum strength for stable
response per unit mass, S,., is given by
Bernal (1992) as;

5873
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but need not be larger than
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where PGV and PGD are the peak ground motion
velocity and displacement respectively and t g
is the effective ground motion duration (time
needed to deliver the central 90% of the total
energy in the record) (Trifunac and Brady
1975). With the period and the duration in
seconds the units for S,. are those of the PGD
divided by sec? or of the PGV divided by
seconds; the expressions given in equation (8)
provide mean level predictions.

For a given system, the required strength
Sac can be computed from equation (8) once a
value of B is selected. Figure 2 shows the
ratio computed by dividing S, by the value
corresponding to the associated symmetric
structure, plotted versus S8 for some selected
values of ey/r, 1, T and 6,. The results shown
are typical of those found for a wide range of
parameters and indicate, not only that the
predicted minimum required strength is insen-
sitive to B, but also that this strength can
often be taken as that corresponding to the
assoclated symmetric structure. It is impor-
tant to clarify that the similarity between
the S,. values of the symmetric and torsional-
ly coupled SDOF representations do not neces-
sarily imply a small influence of torsion on
the safety against instability. This is so
because the safety margin depends on the ratio
of capacity to demand and the available
"capacity" of the eccentric system for a given
B value is not the same as the strength of the
symmetric structure.

The ultimate capacity of the equivalent SDOF
model, expressed as a base shear coefficient,
can be shown to be given by;

N-1 pi + Breg/r
Co = ¥ OF; (—F—) 9
i=1 Py
where
£
py = (u) (10)
r

and AF; is the increment in force needed to
induce the ith yielding event. The summation
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Fig.2 Ratio of §S,. to S,, of the associated
symmetric structure, as a function of B, for
some selected systems.
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Fig.3 Ratio of C, to C, for different values
of O, e/b and a, for n=1.

involves N-1 terms because the structure of
Figure 1 becomes a mechanism when there is
one bar left to yield. It is worth noting
that the value of p; is the same as that given
by equation(5)if instantaneous values of O
and the eccentricity are used.

An assessment of the equivalent strength
computed from equation (9) can not be done in
general because the results are dependent on
the particular distribution of the resisting
elements. Some observations of practical
interest can be made, however, if the
strength distribution is prescribed and if
equation (9) is simplified by assuming that
the term in parenthesis remains equal to the
initial value for all the terms in the summa-
tion. Numerical results have indicated that
the foregoing approximation typically does
not introduce undue error. Consider the
particular case where the strength distribu-
tion is proportional to member forces which
result from the application of a load at the
center of mass, except for the member at the
edge of the deck nearest to the center of
stiffness, which we assume to be stronger
than called for by the design. Provided the
edge element is sufficiently strong the
structure will fail by pivoting about this
element and one can obtain the following
expression;

Ce/C allud ﬂ)z (11)
YTV (0% + BY(L + 208+ (eq/D))

where

Q
A =
(eo/1)

(12)

and C, is the summation of the yield capaci-
ties of all the resisting elements divided by
the weight of the deck; n is the global
overstrength introduced by the excess capacity
of the edge element about where the pivoting
ocurrs. It should be noted that 5 is simply
equal to the actual Cy divided by the value of
C, corresponding to an overstrength of one in
the edge element. Values of the strength ratio
computed from equation (ll), for representa-
tive values of Q, eo/b, and the aspect ratio
of the deck h/b, are plotted in Figure 3 for
the case n=1. These curves are computed using
values of g that minimize the C,/C, ratio.
As can be seen from Figure 3, the reduction of
the strength capacity of the equivalent SDOF
system compared to total capacity which 1is
available when the system is treated as planar
is generally negligible for practical purpos-
es. Nevertheless, the ratio can be much
smaller than one if the pivoting element has
an overstrength ratio which is much larger
than the average. The previous observation is
illustrated in Figure 4 which plots the ground
motion scale factor needed to induce collapse
versus n, for a system with three bar subject-
ed to the EW component of El Centro (1940);
for comparison, the collapse intensity ob-
tained when the structure is treated as planar
is also shown. It should be noted that the
results for the eccentric system in Figure 4
are not obtained from a SDOF solution but by
direct integration of the coupled equations.
As can be seen from the figure the collapse
intensity for the eccentric system becomes
independent of the total strength once the
failure is controlled by pivoting about the
strong element. In contrast, when the system
is analyzed as planar, the collapse intensity
is linearly related to the total strength pro-
vided. The behavior depicted in Figure 4 in
all likelihood carries over to the case of
multistory structures, and appears to be one
of the fundamental reasons why it may not be
possible to estimate instability thresholds on
the basis of results from planar models.
Another interesting case is that when the
failure mode involves pivoting about an
internal element that is close to the geomet-
ric center of the deck. Unfortunately, in
this case the equivalent strength becomes
dependent on the number and distribution of
the resisting elements obviating the possi-
bility for deriving a general expression.
Although preliminary results appear to indi-
cate that this type of failure can result in
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significant reductions in the collapse inten-
sity, the strength-stiffness relationship of
the resisting elements where this failure has
been observed have generally been quite
unrealistic.

3. PRELIMINARY OBSERVATIONS OF THE EFFECT OF
TORSION ON INSTABILITY OF MULTISTORY BUILD-
INGS

The structure shown in Figure 5a is utilized
here to derive some preliminary observations
on the effect of torsion on instability of
multistory structures. As shown, the struc-
ture is composed of two identical frames and
one shear wall and is three stories high; the
typical assumption of rigid diaphragm action
for the floor slabs is utilized. Resisting
elements perpendicular to the frames and wall
considered and the corresponding component of
the ground motion are neglected in this
preliminary investigation. The analyses are
carried out wusing DRAIN-TABS (Guendelman
Israel and Powell 1977) using 5% of critical
damping on each of the first two modes of the
structure.

The collapse intensity for the EW component
of El Centro is first computed introducing a
constrain against plan rotation. Using itera-

tions it is found that the critical ground

motion scale factor is 2.10 and the mechanism
along the height is found to be global as one
would expect due to the presence of the shear
wall. Following this analysis the constrain
against plan rotation was removed and the
iterative process repeated to compute the
critical intensity for the actual eccentric
structure. In this case the critical scale
factor was found to be 1.36 and the failure
mode was essentially a pivoting about the wall
with first story mechanisms in the two frames.
An illustration of the failure mode is pre-
sented in part (b) of Figure 5. It is worth
noting that in this example the strength of
the frames and the wall have been apportioned
in accordance with the results of a standard
analysis. Given the pivoting failure mode
observed, increases in wall capacity, which
would appear to be beneficial in a standard
planar analysis would actually lead to little
or no increases in the collapse intensity.

4. CONCLUSIONS

The results of the investigation appear to
indicate that the intensity of ground motion
needed to induce collapse in one story struc-
tures is mnot 1likely to be significantly
affected by torsional eccentricity, provided
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Fig.4 Collapse intensity versus overstrength
factor for a three member eccentric structure
(T=lsec, C,=0.1, h/b=0.5 and 5% damping).
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Fig.5 (a) Three story structure used to exam-
ine instability (b) Three dimensional mecha-
nism failure mode.

the overstrength of the various elements do
not deviate too much from the average for the
system. In the cases where the previous
condition 1is not satisfied, the structure
typically fails by pivoting about the strong
element at an intensity that can be much
lower that than which would be inferred if
the system were analyzed as planar. Based on
results obtained for planar structures and on
a pilot study carried out using a three
dimensional three story building it appears
that the shape of the failure mode is likely
to play a fundamental role in the instability
of actual multistory structures.
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