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ABSTRACT: The response of adjacent buildings in a row, subjected to strong earthquake motions is analyzed,
taking into account their mutual pounding resulting from insufficient separation distances. Each building is
idealized as a series of lumped mass, shear beam type MDOF system with bilinear force-deformation
characteristics. One translational degree of freedom is allowed for every mass, except for the foundation mass
which, in addition, can rotate to permit rocking motion. It is assumed that pounding can occur only at the floor
levels, where the masses are lumped. Impacts are simulated by means of viscoelastic elements. Amplification of
the response due to pounding is found to depend primarily on the period ratios, mass ratios and different heights
of the adjacent buildings. Suggestions are given for possible introduction into codes of certain conditions, as an

alternative to the seismic separation requirement.

1 INTRODUCTION

Studies from recent earthquakes that have struck
major cities, have shown that pounding between
adjacent buildings can cause varying degrees of
structural, e.g. Bertero 1987 and non-structural
damage, e.g EERI 1989. Although many modern
codes may include separation requirements so that
pounding could be avoided, large sections of cities
have been built before any such requirements were
introduced. The separation requirement, even for new
buildings, has considerable architectural implications
on small urban lots, because to make provision for the
worst-case condition could result in large building
separations and significant loss of usable space. On
the other hand, the idea of urban buildings with small
spaces between them, creates a very difficult
maintenance problem.

The problem of earthquake induced structural
pounding has been studied primarily for pairs of
buildings, e.g. Wolf and Skrikerund 1980, Liolios
1988, Papadrakakis, Mouzakis, Plevris, Bitzarakis
1991. All the aforementioned studies indicate that
pounding can amplify or reduce the response of pairs
of adjacent structures.

When there are more than two buildings in a row,
which is a common case in city blocks, the problem
of pounding appears quite different since the interior
buildings are subjected to two-sided impacts, whereas:
the end ones to one-sided impacts (Anagnostopoulos
1988, Anagnostopoulos and Spiliopoulos 1992).

The present paper addresses the problem of
earthquake induced pounding in rows of neighbouring
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buildings using nonlinear, MDOF models on
viscoelastic foundation. Results are presented in the
form of mean amplification ratios of story shears
(elastic response) and ductility factors (inelastic
response) for five earthquake motions using as a
reference the response without pounding.

For a more detailed discussion one is referred to
Anagnostopoulos and Spiliopoulos 1992.

2 IDEALIZATION-ASSUMPTIONS

In the present work, each of a number of adjacent
buildings is idealized as a MDOF, close-coupled
(shear beam type) system with bilinear interstory
resistance characteristics and masses lumped at the
floor levels (Fig.1). Rayleigh type modal damping 5%
of critical in the first two modes of each structure is
specified. Foundation flexibility is accounted for by
means of appropriate rocking and translational spring-
dashpot elements. It is further assumed that floor
elevations are the same for all buildings and pounding
is simulated with viscoelastic impact elements, each of
them consisting of a spring with constant s, and a
dashpot with constant c;. These elements become
active only when the corresponding neighbouring
floor masses come into contact. One translational
degree of freedom is allowed for every mass, except
for the mass of the foundation which in addition, can
rotate to permit rocking motion. All systems are
subjected to the same ground acceleration u.(t), which
implies that any effects of phase difference due to
travelling waves are neglected.



Figure 1. Idealization of adjacent buildings.

3 EQUATIONS OF MOTION

Let u; be the horizontal displacement of mass m; of
one of the systems relative to the ground, u, the
translation and ¢, the rotation of the foundation, &; the
part of u; due to structural deformations. Then one
can write’ y; as:

W=8 +u, +h o, &

where h; is the elevation of mass m; from the base
(Fig.1). Two alternative formulations of the equations
of motion are possible: either in terms of the total
displacements u;, which include the rigid body
component ub+f1 ¢, or in terms of the structural
deformations §;. "The first formulation results in a
diagonal mass matrix, but in a non-symmetric
damping matrix due to impact elements. In the second
formulation the opposite happens: the resulting mass
matrix is non-diagonal, whereas the damping matrix
due to impact elements is symmetric. For
computational efficiency the second formulation has
been selected. Thus the equation of motion for mass
m; can be written as follows:

8+, +hby) + i};cji 8, +F,+R;= -mi, @

where dots indicate derivatives with respect to time,
¢; = damping coefficients (Rayleigh type), F

impact force which acts only when contact occurs, R;
= restoring force due to structural resistance, n=
number of floors of the system considered, i, =
ground acceleration. Since impact force starts acting

when contact occurs from either side of the system
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considered, we keep track of the instantaneous
distances between mass m; and its neighbouring two
masses (Figure 2):

Vi = Uy - Y- dgy
()

Ve =4y Uy - dy

where uq , Uiy = total displacements of the two
masses a ljacent to mass m; on the left and right side,
respectively, and dg, and d, the separation distances
when the systems are at rest Thus, the conditions for
contact between mass m, and its neifhbouring masses
are v,>0 and v,>0, for left and right contact,
respectively. When concurrent left and right impacts
occur, impact force F; will be given by the equation:

F;=F, -F; =(s,v; +¢V)-(sv; +¢vp) )
It is obvious that the first or the second parenthesis
will be zero if no right or left impacts occur; s, c, ,
are the right and s, , c; are the left spring and damping
constants of the impact elements.
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Figure 2. Notation for impact forces on mass m;.

The nonlinear restoring forces R; are computed
numerically from the bilinear force-deformation
relations of each story (Fig.1) :

R; =kj(8; - 8;.,) - k., (8;, - §)) @

where k} = tangent stiffness of story j.

Equation (2) can be written for all the n masses of
each system. Since two additional degrees of freedom
for the system exist, two more equations expressing
the dynamic equilibrium of all the horizontal forces
and their moments about the base are written. The
first of these two equations involves the mass m, and
the second one, the moment of inertia I, of the
foundation.

If N systems in a row are present, the total number
of degrees of freedom for the whole configuration is:

N
Y n; +2N where n; is the ith system in the row.
i=1



Coupling of the equations of two adjacent systems
exists only when one or more masses come into
contact. In matrix form, one can write the equations
for the whole configuration :

(M1 {U} + [C} {0} + [S] {U} + (R} = -ii, {m} (6)

where [M]=mass matrix, {U}=displacement vector
of all the unknown d.o.f., [C]=[C]y + [C], is the
total damping matrix, [Clz= o[M] + B[K] =
structural damping matrix of Rayleigh type,
[K]=elastic stiffness matrix, {R}=vector of structural
resistances, {m}=right-hand side mass vector, [C],
and [S] = damping and stiffness matrix due to
dashpot and spring constants, respectively, of active
impact elements. [M] and [K] are block diagonal
matrices. Each one consists of submatrices of the
individual systems, which are of the usual form of a
close-coupled shear beam-type model.

The damping matrix [C], is formed by submatrices
6x6, each of them corresponding to an impact element
currently active. Each submatrix couples the degrees
of freedom at the two ends of the impact element, as
well as the degrees of freedom associated with the
foundation masses of the two colliding buildings. If ¢
is the dashpot constant of the impact element between
masses m; and m; and h is the elevation of the two
masses from the base, the 6x6 submatrix [C]; is given
by:

[- c c ¢ch -¢c —-c¢ =—ch
¢ch -¢ —-c¢ —ch
[C]ij - ch? —ch —ch —ch?
c c ch
SYM c ch
L Ch2 .

The first and 4th columns of [C]; correspond to the
translation of masses m; and m; respectively, the 2nd
and 5th columns correspond to the base translations of
the two buildings and the 3rd and 6th columns
correspond to the base rotations.

The product [S]{U} as well as the resistance vector
{R} are formed directly in the right hand side of the
algebraic system of equations to which the differential
equations are transformed to be solved numerically.

Finally, there is no need to assemble the [K] matrix
of the configuration, since only the individual stiffness
matrices of the systems are evaluated for an initial
eigensolution.

4 COMPUTATIONAL CONSIDERATIONS

The equations of motion are solved numerically using
central differences with Newmark's method to start
the solution. Since the impact element stiffnesses are
generally large compared to the story stiffnesses, the
time step required to adequately reproduce the impact

forces is quite small. Therefore it becomes necessary
for computational efficiency to use two different time
steps: a large time step, applied when no impact takes
place and a finer time step which is applied when two
Or more masses come into contact. As a rule, the
large time step should be less than about 1/10 the
lowest period of all natural periods of the buildings in
the group and the finer time step should be less than
about 1/10 the lowest local period, determined from
the impact element stiffnesses and the associated
masses. For computational efficiency also, matrices
are stored in skyline form, whereas a book-keeping
approach of the current active impact elements is
applied.

5 PARAMETRIC STUDIES

Parametric investigations were performed on a group
of 5-story and a group of 10-story systems. Four 5-
story systems with fundamental periods of 0.27sec,
0.36sec, 0.48sec and 0.60sec as well as two 10-story
systems with fundamental periods of 0.78sec, 1.03sec
were used. Each system in the group has the same
mass in a given floor, whereas the stiffnesses of each
system, assumed to vary lineraly with height, were
selected to produce the desired periods. Yield levels
for the inelastic solutions were taken equal to the story
shears which were determined in accordance with the
UBC code (1988). Foundation constants were
determined using spread footings and stiff soil
conditions. A sensitivity study has shown that the
response of the pounding systems is not very sensitive
to changes in the impact elements' stiffnesses or
damping constants. The stiffnesses of the impact
springs were chosen so that the local periods of the
mass - impact spring are below the lowest
translational periods of the pounding systems. The
damping constants of the impact elements were
estimated as suggested by Anagnostopoulos 1988, for
a coefficient of restitution r=0.50. Elastic and
inelastic analyses have been performed for 5
earthquake records listed in Table 1. The scale in the
last column of the Table was computed by equating
the Arias intensities of these motions to the Arias
intensity of the El Centro record. For elastic analyses
results are presented in terms of mean values of ratios
(V/V,) and for inelastic analyses in terms of mean
values of ratios (W/1,), for the 5 motions. V and L are
the maximum story shear and ductility factor of the
pounding building respectively, whereas V and |, are
the corresponding maximum story shear and ductility
factor of the same building without pounding.

5.1 System configuration

The great many ways in which different buildings can
be arranged in a row, constitute one of the major
difficulties in studying the problem at hand. Four
different configurations concerning the two buildings
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with periods T=0.36 and T=0.60 sec are indicated as
an inset at the top of Figure 3.

Table 1. Earthquake motions used in analyses

Record Upymsx  Duration  Scale

(® (sec)
El Centro (1940)- NS 0.35 10 1.00
Taft (1952)-S69E 0.18 15 1.75
Eureka (1954)-N79E 0.26 10 1.33
Olympia (1949)-N86E  0.28 23 1.25
Parkfield (1966)-65E 0.49 10 0.82

(Array No.2)

The response of the system with period T=0.36
sec is plotted in the two graphs at the bottom of the
figure. The first two configurations are considered
together and in the line corresponding to the 2-system
case the maximum of the mean values of ratios from
the five earthquake motions are plotted, whereas for
the 3 and 4 system configurations, the average values
of the mean ratios of the two end buildings are
plotted.
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Figure 3. Effects of pounding on elastic and inelastic
response of  S-story buildings in  different
configurations.

It can be seen that there are not significant
differences between the results of the three cases and
especially between the 3 and 4 system cases. A
conclusion, therefore, can be drawn that the effects of
multiple collisions on the response of any building in
a given configuration are predominantly determined
by the properties of the adjacent buildings. The
collisions of buildings that are not adjacent to the
building considered and thus do not interact with it
directly, do not influence this building's response
appreciably. Therefore, a 3- system configuration, in
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which one and two-sided impacts can take place, is
sufficient to study the problem of system
configuration.

Figure 4 shows the effects of one-sided or two-
sided pounding on the response of the 5-story system
with T=0.36 sec. The three lines in each graph
correspond to the configurations shown at the top of
the Figure, each of them characterized by the ratio p
of the period of the system examined (in this case
T=0.36) to the period of the adjacent system. Results
from elastic solutions are given in terms of shear
ratios V/V, (upper graphs) and from inelastic
solutions in terms of ductility ratios p/p, (lower
graphs). If the system examined is between the other
two (two-sided impact), then these ratios are the
mean values for 5 earthquake motions, whereas if the
system is at the two ends (one-sided impact), then the
larger of the mean ratios from the two end systems
are plotted.
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Figure 4. Effects of pounding on elastic and inelastic
response of a S-story system.

It is observed that when the adjacent system is more
flexible (p<1), pounding response is amplified. As
the value of p becomes lower, the amplification
increases. Moreover, there is no much difference in
the amplification of the response if we compare the
results from one-sided and two-sided cases except for
the inelastic case with p=0.60, where for the one-
sided impacts we get larger amplifications. For the
case of p>1 the elastic response due to pounding is
reduced. The reduction is greater in the case of two-
sided pounding as would be expected since the system
pounds against stiffer ones on both sides. On the other
hand, the inelastic response may be amplified for the



case of one-sided pounding, as can be seen in the
graph of Fig.4 §

Next the effects of soil conditions on the response
due to pounding are investigated. Since effective
system periods would increase as a result of a softer
soil, the consequences of pounding are expected to be
reduced. This was certified by analyzing a 10-story
system configuration with foundation constants
corresponding to a soil 5 times softer than the
original. The periods of the systems shown at the top
of Figure 5 were increased from 0.78 sec and 1.03
sec to 0.92 sec and 1.14 sec, respectively. The
maximium reduction that can be observed in the mean
p/u, ratios of T=1.03 sec goes up to about 30%.
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Figure 5. Effects of soil conditions on the inelastic
seismic response of a 10-story system subjected to
pounding

5.2 Buildings of unequal heights

The effect of pounding for buildings of unequal
heights is examined next. The 10-story system with
T=1.03 sec and the 5-story system with T=0.36 sec,
placed at a distance of Smm were analyzed for the 5
earthquake motions. Results are presented in Fig 6a in
terms of mean and maximum ductility ratios.It can be
observed that pounding causes large ductility demands
on the low building. On the other hand, the effects on
the response of the tall building are not so significant.

Much more serious consequences due to pounding
appear (as shown in Fig 6b) for the tall building when
the low building is stiff and massive and thus restrains
the motion of the lower half of the tall building.

5.3 Seismic separation

As the separation distance increases the effects due to
pounding decrease. In Figure 7 results from testing
seismic separation requirements of UBC 1988, as well
as Eurocode No.8, 1989 are presented. Two
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Figure 6. Effects of pounding on the inelastic
response of two buildings with different heights.
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Figure 7. Effects of separation distance on the
inelastic seismic response of 5 and 10-story systems
subjected to pounding.

configurations were analyzed one with 5-story systems
and one with 10-story systems. Four distances were

examined: d,=0.Scm (practically in contact),
dy =62 +82, where 8, and 8, are the UBC

design displacements of the colliding buildings, d, =
d;+d, = the UBC required separation distance and d,
= the separation distance of Eurocode No.8.

Although the model is highly idealized and
therefore not very appropriate to check code
provisions, one can see that the UBC specified
separation is sufficient to preclude pounding for the
10-story systems but not quite so for the S-story



systems (although in this case the effects of collisions
are almost negligible). The more conservative
Eurocode 8 separation . requirement is adequate for
both the 10-story and 5-story systems.

5.4 Effects of relative mass size

The effect of different relative mass sizes on the
amplification response of the pounding buildings was
examined next. Three 5-story systems were used as
indicated at the top of Figure 8. The larger of the
mean ductility ratios of the two end systems were
plotted for the five earthquakes and for four mass
sizes of the system in the middle.

In all cases, properties of the end systems were
unchanged, while the stiffness and yield levels of the
middle system was changed in proportion to the mass,
so that the periods and yield displacements be kept
constant, same as in the basic design, in which the
three systems have equal masses. It can be seen that
when the masses of the middle building are reduced 5
times, there is practically no amplification of the
response due to pounding, whereas more than 50 %
amplification appears when the masses of the middle
building increase 5 times.
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Figure 8. Effects of mass size on the inelastic seismic
response of 5-story systems subjected to pounding.

6 CONCLUSIONS

The problem of earthquake induced pounding of
several buildings in a row has been investigated, using
lumped mass, MDOF, shear beam type idealisation.
Subject to the limitations of the model used, the
following conclusions may be drawn:

1. Amplification of the response, due to pounding,
of a building depends mainly on its period and mass
in relation to the periods and masses of its adjacent
buildings. As a rule, when the masses are similar, the
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response of the stiffer building is amplified when it
pounds against a more flexible one. When there is
large difference in the masses, the building with the
smaller mass is highly penalised.

2. For adjacent buildings of unequal heights,
serious problems can be caused from pounding. Due
to the differences in their masses and periods, the
small building is highly overstressed. On the other
hand, when the lower building is stiff and massive,
the upper part of the taller building is greatly
penalised.

3. From the examples that are considered here, the
seismic separation gaps introduced by the codes seem
to be generally adequate to prevent pounding or
highly reduce its effects.

4. Differences in heights, periods and masses of
adjacent buildings seem to be the most crucial factors
that affect the response of pounding buildings. It may,
therefore, be possible to introduce into the codes
conditions and provisions as an alternative to the
seismic separation requirement.
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